Abstract. We study excitation waves on a Newman-Watts small-world network model of coupled excitable elements. Depending on the global coupling strength, we find differing resilience to the added long-range links and different mechanisms of propagation failure. For high coupling strengths, we show agreement between the network and a reaction-diffusion model with additional mean-field term. Employing this approximation, we are able to estimate the critical density of long-range links for propagation failure. ar X i
Metamaterials are artificial composites, developed to exhibit specific properties. Their characteris...
We numerically investigate the propagation of small-amplitude elastic waves in random fiber networks...
The small world network model is a simple model of the structure of social networks, which possesses...
We study excitation waves on a Newman–Watts small-world network model of coupled excitable elements....
We examine traveling-wave solutions on a regular ring network with one additional long-ran...
Excitation waves are studied on trees and random networks of coupled active elements. Undamped propa...
We investigate how performance (i.e. activity of the nodes and their subsequent synchronization) of ...
We study effects of different network topologies on the noise-induced pattern formation in a two-dim...
International audienceWe have considered infinite systems of nonlinear ODEs on the one-dimensional in...
International audienceWe study the small-world networks recently introduced by Watts and Strogatz [N...
The problem of oscillation mode recognition is one of the most important issues under investigation ...
The problem of wave propagation control in one-dimensional systems, characterized by long-range inte...
An excitable medium has two key properties: a sufficiently large stimulus provokes an even bigger re...
Trapping and untrapping of spiral tips in a two-dimensional homogeneous excitable medium with local ...
In this paper, we study the cascading failure in Watts-Strogatz small-world networks. We find that t...
Metamaterials are artificial composites, developed to exhibit specific properties. Their characteris...
We numerically investigate the propagation of small-amplitude elastic waves in random fiber networks...
The small world network model is a simple model of the structure of social networks, which possesses...
We study excitation waves on a Newman–Watts small-world network model of coupled excitable elements....
We examine traveling-wave solutions on a regular ring network with one additional long-ran...
Excitation waves are studied on trees and random networks of coupled active elements. Undamped propa...
We investigate how performance (i.e. activity of the nodes and their subsequent synchronization) of ...
We study effects of different network topologies on the noise-induced pattern formation in a two-dim...
International audienceWe have considered infinite systems of nonlinear ODEs on the one-dimensional in...
International audienceWe study the small-world networks recently introduced by Watts and Strogatz [N...
The problem of oscillation mode recognition is one of the most important issues under investigation ...
The problem of wave propagation control in one-dimensional systems, characterized by long-range inte...
An excitable medium has two key properties: a sufficiently large stimulus provokes an even bigger re...
Trapping and untrapping of spiral tips in a two-dimensional homogeneous excitable medium with local ...
In this paper, we study the cascading failure in Watts-Strogatz small-world networks. We find that t...
Metamaterials are artificial composites, developed to exhibit specific properties. Their characteris...
We numerically investigate the propagation of small-amplitude elastic waves in random fiber networks...
The small world network model is a simple model of the structure of social networks, which possesses...