In this paper we apply proof mining techniques to compute, in the setting of CAT(κ) spaces (with κ> 0), effective and highly uniform rates of asymptotic regularity and metastability for a nonlinear generalization of the ergodic averages, known as the Halpern iteration. In this way, we obtain a uniform quantitative version of a nonlinear extension of the clas-sical von Neumann mean ergodic theorem. MSC: 47H25; 47H09; 03F10, 53C23
Note:In this thesis, we discuss two asymptotic properties of some operators T on an L (1 <p < oo ) o...
A sequence (sn) of integers is good for the mean ergodic theorem if for each invertible measure-pres...
AbstractRecently, Bass and Pyke proved a strong law of large numbers for d-dimensional arrays of i.i...
In this paper we apply proof mining techniques to compute, in the setting of CAT(κ) spaces (with κ ...
AbstractThis paper provides an effective uniform rate of metastability (in the sense of Tao) on the ...
AbstractThis paper is another case study in the program of logically analyzing proofs to extract new...
In this paper we obtain new effective results on the Halpern iterations of nonexpansive mappings usi...
Abstract. We consider the extent to which one can compute bounds on the rate of convergence of a seq...
AbstractWe give a quantitative version of a strong nonlinear ergodic theorem for (a class of possibl...
Abstract. We consider the extent to which one can compute bounds on the rate of convergence of a seq...
In this survey we present some recent applications of proof mining to the fixed point theory of (asy...
AbstractThis paper is another case study in the program of logically analyzing proofs to extract new...
We first study the rate of growth of ergodic sums along a sequence (an) of times: SNf(x)= μn≤Nf(Tanx...
Abstract. Given a convergence theorem in analysis, under very gen-eral conditions a model-theoretic ...
We first study the rate of growth of ergodic sums along a sequence (an) of times: SNf(x)= μn≤Nf(Tanx...
Note:In this thesis, we discuss two asymptotic properties of some operators T on an L (1 <p < oo ) o...
A sequence (sn) of integers is good for the mean ergodic theorem if for each invertible measure-pres...
AbstractRecently, Bass and Pyke proved a strong law of large numbers for d-dimensional arrays of i.i...
In this paper we apply proof mining techniques to compute, in the setting of CAT(κ) spaces (with κ ...
AbstractThis paper provides an effective uniform rate of metastability (in the sense of Tao) on the ...
AbstractThis paper is another case study in the program of logically analyzing proofs to extract new...
In this paper we obtain new effective results on the Halpern iterations of nonexpansive mappings usi...
Abstract. We consider the extent to which one can compute bounds on the rate of convergence of a seq...
AbstractWe give a quantitative version of a strong nonlinear ergodic theorem for (a class of possibl...
Abstract. We consider the extent to which one can compute bounds on the rate of convergence of a seq...
In this survey we present some recent applications of proof mining to the fixed point theory of (asy...
AbstractThis paper is another case study in the program of logically analyzing proofs to extract new...
We first study the rate of growth of ergodic sums along a sequence (an) of times: SNf(x)= μn≤Nf(Tanx...
Abstract. Given a convergence theorem in analysis, under very gen-eral conditions a model-theoretic ...
We first study the rate of growth of ergodic sums along a sequence (an) of times: SNf(x)= μn≤Nf(Tanx...
Note:In this thesis, we discuss two asymptotic properties of some operators T on an L (1 <p < oo ) o...
A sequence (sn) of integers is good for the mean ergodic theorem if for each invertible measure-pres...
AbstractRecently, Bass and Pyke proved a strong law of large numbers for d-dimensional arrays of i.i...