Abstract. To a pair of elliptic curves, one can naturally attach two K3 surfaces: the Kummer surface of their product and a double cover of it, called the Inose surface. They have prominently featured in many interesting constructions in algebraic geometry and number theory. There are several more associated elliptic K3 surfaces, obtained through base change of the Inose surface; these have been previously studied by the second named author. We give an explicit description of the geometric Mordell-Weil groups of each of these elliptic surfaces in the generic case (when the elliptic curves are non-isogenous). In the non-generic case, we describe a method to calculate explicitly a finite index subgroup of the Mordell-Weil group, which may be ...