Abstract. Differential graded algebra invariants are constructed for Legendrian links in the 1-jet space of the circle. In parallel to the theory for R3, Poincaré–Chekanov polynomials and characteristic al-gebras can be associated to such links. The theory is applied to dis-tinguish various knots, as well as links that are closures of Legendrian versions of rational tangles. For a large number of two-component links, the Poincaré–Chekanov polynomials agree with the polynomials defined through the theory of generating functions. Examples are given of knots and links which differ by an even number of horizontal flypes that have the same polynomials but distinct characteristic algebras. Results ob-tainable from a Legendrian satellite constru...
In this article, we give a tangle approach in the study of Legendrian knots in the standardcontact t...
The differential expansion is one of the key structures reflecting group theory properties of colore...
A basic problem in contact topology is to determine whether two Legendrian knots or links are equiva...
AbstractWe establish tools to facilitate the computation and application of the Chekanov–Eliashberg ...
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2001.Includes bibliogr...
Legendrian knot theory is the study of topological knots and links that satisfy an additional, geome...
Legendrian knot theory is the study of topological knots and links that satisfy an additional, geome...
Theory is developed for linear-quadratic at infinity generating families for Legendrian knots in R3....
It is shown that Legendrian ( respectively transverse) cable links in S-3 with its standard tight co...
Abstract. We study satellites of Legendrian knots in R3 and their relation to the Chekanov–Eliashber...
A basic problem in contact topology is to determine whether two Legendrian knots or links are equiva...
We write a program in Java to generate all grid diagrams of up to size 10. Using equivalence between...
<p>For any Legendrian knot in R^3 with the standard contact structure, we show that the existence of...
We write a program in Java to generate all grid diagrams of up to size 10. Using equivalence between...
In this article, we give a tangle approach in the study of Legendrian knots in the standardcontact t...
In this article, we give a tangle approach in the study of Legendrian knots in the standardcontact t...
The differential expansion is one of the key structures reflecting group theory properties of colore...
A basic problem in contact topology is to determine whether two Legendrian knots or links are equiva...
AbstractWe establish tools to facilitate the computation and application of the Chekanov–Eliashberg ...
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2001.Includes bibliogr...
Legendrian knot theory is the study of topological knots and links that satisfy an additional, geome...
Legendrian knot theory is the study of topological knots and links that satisfy an additional, geome...
Theory is developed for linear-quadratic at infinity generating families for Legendrian knots in R3....
It is shown that Legendrian ( respectively transverse) cable links in S-3 with its standard tight co...
Abstract. We study satellites of Legendrian knots in R3 and their relation to the Chekanov–Eliashber...
A basic problem in contact topology is to determine whether two Legendrian knots or links are equiva...
We write a program in Java to generate all grid diagrams of up to size 10. Using equivalence between...
<p>For any Legendrian knot in R^3 with the standard contact structure, we show that the existence of...
We write a program in Java to generate all grid diagrams of up to size 10. Using equivalence between...
In this article, we give a tangle approach in the study of Legendrian knots in the standardcontact t...
In this article, we give a tangle approach in the study of Legendrian knots in the standardcontact t...
The differential expansion is one of the key structures reflecting group theory properties of colore...
A basic problem in contact topology is to determine whether two Legendrian knots or links are equiva...