Abstract An approximation to the many-body London dis-persion energy in molecular systems is expressed as a func-tional of the occupied orbitals only. The method is based on the local-RPA theory. The occupied orbitals are local-ized molecular orbitals and the virtual space is described by projected oscillator orbitals, i.e. functions obtained by multiplying occupied localized orbitals with solid spheri-cal harmonic polynomials having their origin at the orbital centroids. Since we are interested in the long-range part of the correlation energy, responsible for dispersion forces, the electron repulsion is approximated by its multipolar expan-sion. This procedure leads to a fully non-empirical long-range correlation energy expression. Molecul...
A new local density functional approach for the calculation of correlation energies of many-electron...
We present an investigation of the convergence behaviour of the local second-order Møller-Plesset pe...
The accuracy of large-scale ab initio calculations is always desired, but they are unfortunately not...
Dans cette thèse sont montrés des développements de l'approximation de la phase aléatoire (RPA) dans...
Accès restreint aux membres de l'Université de Lorraine jusqu'au 2015-03-15In this thesis are shown ...
In the past decade, the random phase approximation (RPA) has emerged as a promising post-Kohn-Sham m...
An accurate determination of the electron correlation energy is an essential prerequisite for descri...
The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, b...
With a transcorrelated Hamiltonian, we perform a many body perturbation (MBPT) calculation on the un...
The random phase approximation (RPA) is an increasingly popular method for computing molecular groun...
The description of electron correlation in quantum chemistry often relies on multi-index quantities....
The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-ex...
We present a method that uses the one-particle density matrix to generate directly localized orbital...
Post Hartree-Fock methods provide a well tested and theoretically sound route to the determination o...
It is demonstrated that a set of local orthonormal Hartree-Fock (HF) molecular orbitals can be obtai...
A new local density functional approach for the calculation of correlation energies of many-electron...
We present an investigation of the convergence behaviour of the local second-order Møller-Plesset pe...
The accuracy of large-scale ab initio calculations is always desired, but they are unfortunately not...
Dans cette thèse sont montrés des développements de l'approximation de la phase aléatoire (RPA) dans...
Accès restreint aux membres de l'Université de Lorraine jusqu'au 2015-03-15In this thesis are shown ...
In the past decade, the random phase approximation (RPA) has emerged as a promising post-Kohn-Sham m...
An accurate determination of the electron correlation energy is an essential prerequisite for descri...
The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, b...
With a transcorrelated Hamiltonian, we perform a many body perturbation (MBPT) calculation on the un...
The random phase approximation (RPA) is an increasingly popular method for computing molecular groun...
The description of electron correlation in quantum chemistry often relies on multi-index quantities....
The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-ex...
We present a method that uses the one-particle density matrix to generate directly localized orbital...
Post Hartree-Fock methods provide a well tested and theoretically sound route to the determination o...
It is demonstrated that a set of local orthonormal Hartree-Fock (HF) molecular orbitals can be obtai...
A new local density functional approach for the calculation of correlation energies of many-electron...
We present an investigation of the convergence behaviour of the local second-order Møller-Plesset pe...
The accuracy of large-scale ab initio calculations is always desired, but they are unfortunately not...