We apply a spectral element method based upon a conforming mesh of quadrangles and triangles to the problem of 2-D elastic wave propagation. The method retains the advantages of classi-cal spectral element methods based upon quadrangles only. It makes use of the classical Gauss{ Lobatto{Legendre formulation on the quadrangles, while discretization on the triangles is based upon interpolation at the Fekete points. We obtain a global diagonal mass matrix which allows us to keep the explicit structure of classical spectral element solvers. We demonstrate the accuracy and eciency of the method by comparing results obtained for pure quadrangle meshes with those obtained using mixed quadrangle-triangle and triangle-only meshes. 1
We present a hybrid spectral element/finite element domain decomposition method for solving elastic ...
A method is described by which the dispersion relations for a two-dimensional structural component c...
A method is described by which the dispersion relations for a two-dimensional structural component c...
International audienceA Triangular Spectral Element Method (TSEM) is presented to simulate elastic w...
We study the numerical dispersion/dissipation of Triangle-based Spectral Element Methods (T SEM) of...
This report serves to investigate the relationship between seismic wave propagation among nearby re...
The Spectral-Element Method (SEM) is a finite-element method that solves the wave equa-tion in the t...
Abstract We present the spectral element method to simulate lastic-wave prop-agation in realistic ge...
The spatial discretization of continuum by finite element method introduces the dispersion error to...
Highly efficient algorithms are needed for full wave modelling in large-scale realistic un-bounded m...
AbstractThe DFT modal analysis is a dispersion analysis technique that transforms the equations of a...
The spectral element method for the analysis of wave propagation in structures is extended by the in...
International audienceWe present a new method for wave propagation in global earth models based upon...
International audienceAn enriched finite element method is presented to solve various wave propagati...
Presented at the 18th ASEG Geophysical Conference and Exhibition, July 2006 © Australian Society of ...
We present a hybrid spectral element/finite element domain decomposition method for solving elastic ...
A method is described by which the dispersion relations for a two-dimensional structural component c...
A method is described by which the dispersion relations for a two-dimensional structural component c...
International audienceA Triangular Spectral Element Method (TSEM) is presented to simulate elastic w...
We study the numerical dispersion/dissipation of Triangle-based Spectral Element Methods (T SEM) of...
This report serves to investigate the relationship between seismic wave propagation among nearby re...
The Spectral-Element Method (SEM) is a finite-element method that solves the wave equa-tion in the t...
Abstract We present the spectral element method to simulate lastic-wave prop-agation in realistic ge...
The spatial discretization of continuum by finite element method introduces the dispersion error to...
Highly efficient algorithms are needed for full wave modelling in large-scale realistic un-bounded m...
AbstractThe DFT modal analysis is a dispersion analysis technique that transforms the equations of a...
The spectral element method for the analysis of wave propagation in structures is extended by the in...
International audienceWe present a new method for wave propagation in global earth models based upon...
International audienceAn enriched finite element method is presented to solve various wave propagati...
Presented at the 18th ASEG Geophysical Conference and Exhibition, July 2006 © Australian Society of ...
We present a hybrid spectral element/finite element domain decomposition method for solving elastic ...
A method is described by which the dispersion relations for a two-dimensional structural component c...
A method is described by which the dispersion relations for a two-dimensional structural component c...