Abstract—In this paper, shrinkage linear complex-valued least mean squares (SL-CLMS) and shrinkage widely linear com-plex-valued least mean squares (SWL-CLMS) algorithms are devised for adaptive beamforming. By exploiting the relationship between the noise-free a posteriori and a priori error signals, the SL-CLMS method is able to provide a variable step size to update the weight vector for the adaptive beamformer, significantly enhancing the convergence speed and decreasing the steady-state misadjustment. On the other hand, besides adopting a variable step size determined by minimizing the square of the augmented noise-free a posteriori errors, the SWL-CLMS approach exploits the noncircular properties of the signal of interest, which consi...