Abstract. Qualitative and quantitative systems to deal with uncer-tainty coexist. Bayesian networks are a well known tool in probabilistic reasoning. For non-statistical experts, however, Bayesian networks may be hard to interpret. Especially since the inner workings of Bayesian networks are complicated they may appear as black box models. Ar-gumentation approaches, on the contrary, emphasise the derivation of results. Argumentation models, however, have notorious difficulty dealing with probabilities. In this paper we formalise a two-phase method to extract probabilistically supported arguments from a Bayesian network. First, from a BN we construct a support graph, and, second, given a set of observations we build arguments from that suppo...