Abstract. The principal purpose of this note is to provide a reconstruction procedure for distributional matrix-valued potential coefficients of Schrödinger-type operators on a half-line from the underlying Weyl–Titchmarsh function. 1
AbstractWe study the inverse spectral problem for a class of Bessel operators given in L2(0,1) by th...
AbstractWe solve the inverse spectral problem of recovering the singular potential from W−12(0,1) of...
Abstract. The inverse problem for the two-dimensional Schrödinger operator on the data from one ene...
Abstract. The principal purpose of this note is to provide a reconstruction procedure for distributi...
Abstract. Building on work on Miura’s transformation by Kappeler, Perry, Shubin, and Topalov, we dev...
Abstract. Building on work on Miura’s transformation by Kappeler, Perry, Shubin, and Topalov, we dev...
In this paper, we propose an approach to inverse spectral problems for the n-th order (n≥2) ordinary...
We consider the Schr\"{o}dinger operator on a finite interval with an $L^1$-potential. We prove that...
We continue the study of the A-amplitude associated to a half-line Schr¿odinger operator, - d2 dx2 +...
We propose a numerical algorithm for solving inverse problems of spectral analysis for Sturm–Liouvil...
We discuss results where the discrete spectrum (or partial information on the discrete spectrum) and...
The authors showed that if the potentials but one were known a priori, then the unknown potential on...
Abstract. We discuss inverse spectral theory for singular differential opera-tors on arbitrary inter...
We continue the study of the A-amplitude associated to a half-line Schrödinger operator, - d^2/dx^2 ...
In this study, depending on the spectral parameter boundary conditions discontinuous coefficients St...
AbstractWe study the inverse spectral problem for a class of Bessel operators given in L2(0,1) by th...
AbstractWe solve the inverse spectral problem of recovering the singular potential from W−12(0,1) of...
Abstract. The inverse problem for the two-dimensional Schrödinger operator on the data from one ene...
Abstract. The principal purpose of this note is to provide a reconstruction procedure for distributi...
Abstract. Building on work on Miura’s transformation by Kappeler, Perry, Shubin, and Topalov, we dev...
Abstract. Building on work on Miura’s transformation by Kappeler, Perry, Shubin, and Topalov, we dev...
In this paper, we propose an approach to inverse spectral problems for the n-th order (n≥2) ordinary...
We consider the Schr\"{o}dinger operator on a finite interval with an $L^1$-potential. We prove that...
We continue the study of the A-amplitude associated to a half-line Schr¿odinger operator, - d2 dx2 +...
We propose a numerical algorithm for solving inverse problems of spectral analysis for Sturm–Liouvil...
We discuss results where the discrete spectrum (or partial information on the discrete spectrum) and...
The authors showed that if the potentials but one were known a priori, then the unknown potential on...
Abstract. We discuss inverse spectral theory for singular differential opera-tors on arbitrary inter...
We continue the study of the A-amplitude associated to a half-line Schrödinger operator, - d^2/dx^2 ...
In this study, depending on the spectral parameter boundary conditions discontinuous coefficients St...
AbstractWe study the inverse spectral problem for a class of Bessel operators given in L2(0,1) by th...
AbstractWe solve the inverse spectral problem of recovering the singular potential from W−12(0,1) of...
Abstract. The inverse problem for the two-dimensional Schrödinger operator on the data from one ene...