Abstract. The 4-dimensional Sklyanin algebra is the homogeneous coordinate ring of a non-commutative analogue of projective 3-space. The degree-two component of the algebra con-tains a 2-dimensional subspace of central elements. The zero loci of those central elements, except 0, form a pencil of noncommutative quadric surfaces. We show that the behavior of this pencil is similar to that of a generic pencil of quadrics in the commutative projective 3-space. There are exactly four singular quadrics in the pencil. The singular and non-singular quadrics are characterized by whether they have one or two rulings by noncommutative lines. The Picard groups of the smooth quadrics are free abelian of rank two. The alternating sum of dimensions of Ext...