Abstract. We show that the discretized configuration space of k points in the n-simplex is homotopy equivalent to a wedge of spheres of dimen-sion n − k+1. This space is homeomorphic to the order complex of the poset of ordered partial partitions of {1,..., n+1} with exactly k parts. We also compute the Euler characteristic in two different ways, thereby obtaining a topological proof of a combinatorial recurrence satisfied by the Stirling numbers of the second kind. 1
Abstract[E. Steingrímsson, Statistics on ordered partitions of sets, arXiv: math.CO/0605670] introdu...
We study ordered configuration spaces $C(n;p,q)$ of $n$ hard squares in a $p \times q$ rectangle, a ...
This paper introduces a GLn(q) analogue for the partition lattice, namely the lattice of partial dir...
The lattice B_n of subsets of the set {1, 2, ..., n} ordered by inclusion and the lattice \Pi_n of p...
AbstractWe study two subposets of the partition lattice obtained by restricting block sizes. The fir...
We prove a formula conjectured by Ahrens, Gordon, and McMahon for the number of interior points for ...
Many results about the homotopy type of posets can be conveniently proved using one topological theo...
From a group action on a variety, define a variant of the configuration space by insisting that no t...
Abstract. We study statistics on ordered set partitions whose generating functions are related to p,...
The theory’s main theorem states that the cardinality of set parti-tions of size k on a carrier set ...
This paper begins by extending the notion of a combinatorial configuration of points and lines to a ...
27 pages,8 figuresWe study statistics on ordered set partitions whose generating functions are relat...
A partition of a set A is a set of nonempty pairwise disjoint subsets of A whose union is A. An equi...
We study the partially ordered set P(a1, ... , an) of all multidegrees (b1, ... , bn) of monomials x...
Abstract. An ordered partition with k blocks of [n]: = {1, 2,..., n} is a sequence of k disjoint and...
Abstract[E. Steingrímsson, Statistics on ordered partitions of sets, arXiv: math.CO/0605670] introdu...
We study ordered configuration spaces $C(n;p,q)$ of $n$ hard squares in a $p \times q$ rectangle, a ...
This paper introduces a GLn(q) analogue for the partition lattice, namely the lattice of partial dir...
The lattice B_n of subsets of the set {1, 2, ..., n} ordered by inclusion and the lattice \Pi_n of p...
AbstractWe study two subposets of the partition lattice obtained by restricting block sizes. The fir...
We prove a formula conjectured by Ahrens, Gordon, and McMahon for the number of interior points for ...
Many results about the homotopy type of posets can be conveniently proved using one topological theo...
From a group action on a variety, define a variant of the configuration space by insisting that no t...
Abstract. We study statistics on ordered set partitions whose generating functions are related to p,...
The theory’s main theorem states that the cardinality of set parti-tions of size k on a carrier set ...
This paper begins by extending the notion of a combinatorial configuration of points and lines to a ...
27 pages,8 figuresWe study statistics on ordered set partitions whose generating functions are relat...
A partition of a set A is a set of nonempty pairwise disjoint subsets of A whose union is A. An equi...
We study the partially ordered set P(a1, ... , an) of all multidegrees (b1, ... , bn) of monomials x...
Abstract. An ordered partition with k blocks of [n]: = {1, 2,..., n} is a sequence of k disjoint and...
Abstract[E. Steingrímsson, Statistics on ordered partitions of sets, arXiv: math.CO/0605670] introdu...
We study ordered configuration spaces $C(n;p,q)$ of $n$ hard squares in a $p \times q$ rectangle, a ...
This paper introduces a GLn(q) analogue for the partition lattice, namely the lattice of partial dir...