We prove that every Hamiltonian graph with n vertices and m edges has cycles with more than p − 12 ln p − 1 different lengths, where p = m − n. For general m and n, there exist such graphs having at most 2 p + 1 different cycle lengths
The problem studied in this paper is that of finding the maximum number of Hamiltonian cycles in a g...
The problem studied in this paper is that of finding the maximum number of Hamiltonian cycles in a g...
The problem studied in this paper is that of finding the maximum number of Hamiltonian cycles in a g...
AbstractWe prove that every Hamiltonian graph with n vertices and m edges has cycles with more than ...
We prove that every Hamiltonian graph with n vertices and m edges has cycles of at least 4 7(m − n) ...
AbstractWe prove that every Hamiltonian graph with n vertices and m edges has cycles with more than ...
In 1999, Jacobson and Lehel conjectured that, for k >= 3, every k-regular Hamiltonian graph has cycl...
AbstractWe investigate the set of cycle lengths occurring in a hamiltonian graph with at least one o...
AbstractLet G be a hamiltonian graph G of order n and maximum degree Δ, and let C(G) denote the set ...
This thesis contains several new results about cycle spectra of graphs. The cycle spectrum of a grap...
AbstractWe study the set of cycle lengths in a hamiltonian graph G of order n with two fixed and non...
We show how to find in Hamiltonian graphs a cycle of length nΩ(1 / log logn). This is a consequence ...
AbstractA graph G of order p ⩾ 3 is called n-hamiltonian, 0 ⩽ n ⩽ p − 3, if the removal of any m ver...
AbstractWe prove that if a graph G on n ⩾ 32 vertices is hamiltonian and has two nonadjacent vertice...
AbstractLet M(k) denote the maximum number of cycles in a Hamiltonian graph of order n and size n+k....
The problem studied in this paper is that of finding the maximum number of Hamiltonian cycles in a g...
The problem studied in this paper is that of finding the maximum number of Hamiltonian cycles in a g...
The problem studied in this paper is that of finding the maximum number of Hamiltonian cycles in a g...
AbstractWe prove that every Hamiltonian graph with n vertices and m edges has cycles with more than ...
We prove that every Hamiltonian graph with n vertices and m edges has cycles of at least 4 7(m − n) ...
AbstractWe prove that every Hamiltonian graph with n vertices and m edges has cycles with more than ...
In 1999, Jacobson and Lehel conjectured that, for k >= 3, every k-regular Hamiltonian graph has cycl...
AbstractWe investigate the set of cycle lengths occurring in a hamiltonian graph with at least one o...
AbstractLet G be a hamiltonian graph G of order n and maximum degree Δ, and let C(G) denote the set ...
This thesis contains several new results about cycle spectra of graphs. The cycle spectrum of a grap...
AbstractWe study the set of cycle lengths in a hamiltonian graph G of order n with two fixed and non...
We show how to find in Hamiltonian graphs a cycle of length nΩ(1 / log logn). This is a consequence ...
AbstractA graph G of order p ⩾ 3 is called n-hamiltonian, 0 ⩽ n ⩽ p − 3, if the removal of any m ver...
AbstractWe prove that if a graph G on n ⩾ 32 vertices is hamiltonian and has two nonadjacent vertice...
AbstractLet M(k) denote the maximum number of cycles in a Hamiltonian graph of order n and size n+k....
The problem studied in this paper is that of finding the maximum number of Hamiltonian cycles in a g...
The problem studied in this paper is that of finding the maximum number of Hamiltonian cycles in a g...
The problem studied in this paper is that of finding the maximum number of Hamiltonian cycles in a g...