A Bayesian approximation to finding the minimum `0 norm solution for an underdetermined linear system is proposed that is based on the beta process prior. The beta process lin-ear regression (BP-LR) model finds sparse solutions to the underdetermined model y = Φx+ , by modeling the vector x as an element-wise product of a non-sparse weight vector, w, and a sparse binary vector, z, that is drawn from the beta process prior. The hierarchical model is fully conjugate and therefore is amenable to fast inference methods. We demon-strate the model on a compressive sensing problem and on a correlated-feature problem, where we show the ability of the BP-LR to selectively remove the irrelevant features, while preserving the relevant groups of correl...
Non-negative and bounded-variable linear regression problems arise in a variety of applications in m...
<p>Analyzing the ever-increasing data of unprecedented scale, dimensionality, diversity, and complex...
We study Bayesian procedures for sparse linear regression when the unknown error distribution is end...
International audienceIn the framework of Compressive Sensing (CS), the inherent structures underlyi...
Sparsity-promoting prior along with Bayesian inference is an effective approach in solving sparse li...
The linear model with sparsity-favouring prior on the coefficients has important applications in man...
Abstract—Many practical methods for finding maximally sparse coefficient expansions involve solving ...
In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to model sparsity-i...
© 2022Statistical inference for sparse covariance matrices is crucial to reveal the dependence struc...
In many problem settings, parameter vectors are not merely sparse, but depen-dent in such a way that...
<p>Bayesian nonparametric methods are useful for modeling data without having to define the complexi...
Compressive sensing (CS) as an approach for data acquisition has recently received much attention. I...
Abstract. We present a framework for efficient, accurate approximate Bayesian inference in generaliz...
We present a framework for efficient, accurate approximate Bayesian inference in generalized linear ...
Sparse regression methods are used for the reconstruction of compressed signals, that are usually sp...
Non-negative and bounded-variable linear regression problems arise in a variety of applications in m...
<p>Analyzing the ever-increasing data of unprecedented scale, dimensionality, diversity, and complex...
We study Bayesian procedures for sparse linear regression when the unknown error distribution is end...
International audienceIn the framework of Compressive Sensing (CS), the inherent structures underlyi...
Sparsity-promoting prior along with Bayesian inference is an effective approach in solving sparse li...
The linear model with sparsity-favouring prior on the coefficients has important applications in man...
Abstract—Many practical methods for finding maximally sparse coefficient expansions involve solving ...
In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to model sparsity-i...
© 2022Statistical inference for sparse covariance matrices is crucial to reveal the dependence struc...
In many problem settings, parameter vectors are not merely sparse, but depen-dent in such a way that...
<p>Bayesian nonparametric methods are useful for modeling data without having to define the complexi...
Compressive sensing (CS) as an approach for data acquisition has recently received much attention. I...
Abstract. We present a framework for efficient, accurate approximate Bayesian inference in generaliz...
We present a framework for efficient, accurate approximate Bayesian inference in generalized linear ...
Sparse regression methods are used for the reconstruction of compressed signals, that are usually sp...
Non-negative and bounded-variable linear regression problems arise in a variety of applications in m...
<p>Analyzing the ever-increasing data of unprecedented scale, dimensionality, diversity, and complex...
We study Bayesian procedures for sparse linear regression when the unknown error distribution is end...