Mirkovic and Vilonen give a proof of the geometric Satake correspondence which provides a natural basis in each representation of a complex reductive group. After briefly reviewing the geometric Satake correspondence, I will discuss the geometry underlying the Mirkovic-Vilonen basis. In the course of this discussion, I will introduce the Anderson-Kamnitzer theory of MV polytopes and explain a surprising connection between MV polytopes and Lusztig’s canonical basis. 1. Geometric Satake correspondence Let G be a Chevalley group, and G ∨ its Langlands dual (corresponding to the dual root datum). Let K be a non-Archimedian local field, and O be its ring of integers (for example, consider K = Qp or K = Fq((t))). Then classical Satake corresponde...
82 pages, with an appendix by Calder Morton-Ferguson and Anne DranowskiUsing the geometric Satake co...
Mirkovi and Vilonen discovered a canonical basis of algebraic cycles for the intersection homology o...
Mirkovi and Vilonen discovered a canonical basis of algebraic cycles for the intersection homology o...
77 pagesInternational audienceThe geometric Satake correspondence can be regarded as a geometric con...
77 pagesInternational audienceThe geometric Satake correspondence can be regarded as a geometric con...
77 pagesInternational audienceThe geometric Satake correspondence can be regarded as a geometric con...
Abstract. The geometric Satake equivalence of Ginzburg and Mirković– Vilonen, for a complex reducti...
The representation theory of reductive groups, such as the group GLn of invert-ible complex matrices...
In this thesis we study geometric Satake correspondance. First we identify the intersection form thr...
On étudie dans cette thèse la correspondance de Satake géométrique. Un premier résultat est l’i...
On étudie dans cette thèse la correspondance de Satake géométrique. Un premier résultat est l’i...
In order to give a combinatorial descriptions of tensor product multiplicites for semisimple groups,...
Abstract. I give another proof of the geometric Satake equivalence from I. Mirkovic ́ and K. Vilonen...
AbstractIn an earlier work, we proved that MV polytopes parameterize both Lusztig's canonical basis ...
We look at the Mirkovic-Vilonen (MV) basis for semisimple Lie algebras and compare this to the assoc...
82 pages, with an appendix by Calder Morton-Ferguson and Anne DranowskiUsing the geometric Satake co...
Mirkovi and Vilonen discovered a canonical basis of algebraic cycles for the intersection homology o...
Mirkovi and Vilonen discovered a canonical basis of algebraic cycles for the intersection homology o...
77 pagesInternational audienceThe geometric Satake correspondence can be regarded as a geometric con...
77 pagesInternational audienceThe geometric Satake correspondence can be regarded as a geometric con...
77 pagesInternational audienceThe geometric Satake correspondence can be regarded as a geometric con...
Abstract. The geometric Satake equivalence of Ginzburg and Mirković– Vilonen, for a complex reducti...
The representation theory of reductive groups, such as the group GLn of invert-ible complex matrices...
In this thesis we study geometric Satake correspondance. First we identify the intersection form thr...
On étudie dans cette thèse la correspondance de Satake géométrique. Un premier résultat est l’i...
On étudie dans cette thèse la correspondance de Satake géométrique. Un premier résultat est l’i...
In order to give a combinatorial descriptions of tensor product multiplicites for semisimple groups,...
Abstract. I give another proof of the geometric Satake equivalence from I. Mirkovic ́ and K. Vilonen...
AbstractIn an earlier work, we proved that MV polytopes parameterize both Lusztig's canonical basis ...
We look at the Mirkovic-Vilonen (MV) basis for semisimple Lie algebras and compare this to the assoc...
82 pages, with an appendix by Calder Morton-Ferguson and Anne DranowskiUsing the geometric Satake co...
Mirkovi and Vilonen discovered a canonical basis of algebraic cycles for the intersection homology o...
Mirkovi and Vilonen discovered a canonical basis of algebraic cycles for the intersection homology o...