Abstract. Full Waveform Inversion (FWI) is a powerful method for reconstructing subsurface parameters from local measurements of the seismic wavefield. This method consists in minimizing a distance between predicted and recorded data. The predicted data is computed as the solution of a wave propagation problem. Conventional numerical methods for the resolution of FWI problems are gradient-based methods, such as the preconditioned steepest-descent, or more recently the l-BFGS quasi-Newton algorithm. In this study, we investigate the interest of applying a truncated Newton method to FWI. The inverse Hessian operator plays a crucial role in the parameter reconstruction. The truncated Newton method allows one to better account for this operator...