In this paper, we propose a hybrid classical-quantum approach to study the electron transport in strongly confined nanostructures. The device domain is made of an active zone (where quantum effects are strong) sandwiched between two electron reservoirs (where the transport is considered highly collisional). A one dimensional effective mass Schrödinger system is coupled with a drift-diffusion model, both taking into account the peculiarities due to the strong confinement and to the two dimensional transversal crystal structure. Interface conditions are built preserving the continuity of the total current. Self-consistent computations are performed coupling the hybrid transport equations with the resolution of a Poisson equation in the whole...
Nanotube structures are unprecedented in their stability and current-carrying capacity at intense dr...
In the present work we study the electronic transport properties of finite length single-wall carbon...
Nanotube structures are unprecedented in their stability and current-carrying capacity at intense d...
International audienceIn this paper, we propose a hybrid classical-quantum approach to study the ele...
We propose a hybrid classical-quantum model to study the motion of electrons in ultra-scaled confine...
International audienceIn this paper we derive by an entropy minimization technique a local Quantum D...
International audienceIn this paper we derive by an entropy minimization technique a local Quantum D...
Nous proposons un modèle hybride classique-quantique pour décrire le mouvement des électrons dans de...
Nous proposons un modèle hybride classique-quantique pour décrire le mouvement des électrons dans de...
Nous proposons un modèle hybride classique-quantique pour décrire le mouvement des électrons dans de...
Nous proposons un modèle hybride classique-quantique pour décrire le mouvement des électrons dans de...
Nous proposons un modèle hybride classique-quantique pour décrire le mouvement des électrons dans de...
Nanotube structures are unprecedented in their stability and current-carrying capacity at intense dr...
Nanotube structures are unprecedented in their stability and current-carrying capacity at intense dr...
Nanotube structures are unprecedented in their stability and current-carrying capacity at intense dr...
Nanotube structures are unprecedented in their stability and current-carrying capacity at intense dr...
In the present work we study the electronic transport properties of finite length single-wall carbon...
Nanotube structures are unprecedented in their stability and current-carrying capacity at intense d...
International audienceIn this paper, we propose a hybrid classical-quantum approach to study the ele...
We propose a hybrid classical-quantum model to study the motion of electrons in ultra-scaled confine...
International audienceIn this paper we derive by an entropy minimization technique a local Quantum D...
International audienceIn this paper we derive by an entropy minimization technique a local Quantum D...
Nous proposons un modèle hybride classique-quantique pour décrire le mouvement des électrons dans de...
Nous proposons un modèle hybride classique-quantique pour décrire le mouvement des électrons dans de...
Nous proposons un modèle hybride classique-quantique pour décrire le mouvement des électrons dans de...
Nous proposons un modèle hybride classique-quantique pour décrire le mouvement des électrons dans de...
Nous proposons un modèle hybride classique-quantique pour décrire le mouvement des électrons dans de...
Nanotube structures are unprecedented in their stability and current-carrying capacity at intense dr...
Nanotube structures are unprecedented in their stability and current-carrying capacity at intense dr...
Nanotube structures are unprecedented in their stability and current-carrying capacity at intense dr...
Nanotube structures are unprecedented in their stability and current-carrying capacity at intense dr...
In the present work we study the electronic transport properties of finite length single-wall carbon...
Nanotube structures are unprecedented in their stability and current-carrying capacity at intense d...