Abstract. Let g be an element of prime order p in an abelian group and α ∈ Zp. We show that if g, gα, and gαd are given for a positive divisor d of p − 1, we can compute the secret α in O(log p · (p/d + √d)) group operations using O(max{p/d,√d}) memory. If gαi (i = 0, 1, 2,..., d) are provided for a positive divisor d of p + 1, α can be computed in O(log p · (p/d + d)) group operations using O(max{p/d,√d}) mem-ory. This implies that the strong Diffie-Hellman problem and its related problems have computational complexity reduced by O( d) from that of the discrete logarithm problem for such primes. Further we apply this algorithm to the schemes based on the Diffie-Hellman problem on an abelian group of prime order p. As a result, we re-duce t...
In this paper we study generalizations of the Diffie-Hellman problems recently used to construct cry...
Abstract. This note is an exposition of reductions among the q-strong Diffie-Hellman problem and rel...
In this paper we study generalizations of the Diffie-Hellman problems recently used to construct cry...
Abstract. Boneh and Venkatesan have recently proposed a polynomial time algorithm for recovering a “...
Let Fp be a finite field of p elements, where p is prime. The bit security of the Diffie-Hellman fun...
We present a generalization of the Diffie-Hellman problem. It is based on the problem of determining...
Abstract. Boneh and Venkatesan have proposed a polynomial time algorithm for recovering a hidden ele...
Both uniform and non-uniform results concerning the security of the Diffie-Hellman key-exchange prot...
Boneh and Venkatesan have recently proposed a polynomial time algorithm for recovering a "hidden" el...
We design a linearly homomorphic encryption scheme whose security relies on the hardness of the deci...
We investigate the computational complexity of the discrete logarithm, the computational Diffie-Hell...
Boneh and Venkatesan have recently proposed an approach to proving that a reasonably small portions ...
Title: Diffie and Hellman are exchanging matrices over group rings Author: Romana Linkeová Departmen...
We offer a public key exchange protocol in the spirit of Diffie-Hellman, but we use (small) matrices...
[[abstract]]The Diffie-Hellman (DH) problem is an important security assumption in modern cryptograp...
In this paper we study generalizations of the Diffie-Hellman problems recently used to construct cry...
Abstract. This note is an exposition of reductions among the q-strong Diffie-Hellman problem and rel...
In this paper we study generalizations of the Diffie-Hellman problems recently used to construct cry...
Abstract. Boneh and Venkatesan have recently proposed a polynomial time algorithm for recovering a “...
Let Fp be a finite field of p elements, where p is prime. The bit security of the Diffie-Hellman fun...
We present a generalization of the Diffie-Hellman problem. It is based on the problem of determining...
Abstract. Boneh and Venkatesan have proposed a polynomial time algorithm for recovering a hidden ele...
Both uniform and non-uniform results concerning the security of the Diffie-Hellman key-exchange prot...
Boneh and Venkatesan have recently proposed a polynomial time algorithm for recovering a "hidden" el...
We design a linearly homomorphic encryption scheme whose security relies on the hardness of the deci...
We investigate the computational complexity of the discrete logarithm, the computational Diffie-Hell...
Boneh and Venkatesan have recently proposed an approach to proving that a reasonably small portions ...
Title: Diffie and Hellman are exchanging matrices over group rings Author: Romana Linkeová Departmen...
We offer a public key exchange protocol in the spirit of Diffie-Hellman, but we use (small) matrices...
[[abstract]]The Diffie-Hellman (DH) problem is an important security assumption in modern cryptograp...
In this paper we study generalizations of the Diffie-Hellman problems recently used to construct cry...
Abstract. This note is an exposition of reductions among the q-strong Diffie-Hellman problem and rel...
In this paper we study generalizations of the Diffie-Hellman problems recently used to construct cry...