This paper presents a set of tools for mechanical rea-soning of numerical bounds using interval arithmetic. The tools implement two techniques for reducing decorrelation: interval splitting and Taylor’s series expansions. Although the tools are designed for the proof assistant system PVS, expertise on PVS is not required. The ultimate goal of the tools is to provide guaranteed proofs of numerical proper-ties with a minimal human-theorem prover interaction.
land This paper presents the Python implementation of an interval system in the extended real set th...
accepted to IWANN 07 conferenceThis paper contribution is about guaranteed numerical methods based o...
We propose a method of using validated interval constraint contraction operators to build routines f...
International audienceThis paper presents a set of tools for mechanical reasoning of numerical bound...
Abstract. We present in this paper a library to compute with Taylor models, a technique extending in...
We present in this report a library to compute with Taylor models, a technique extending interval ar...
Primary Audience for the Book • Specialists in numerical computations who are interested in algorith...
Traditional design of numerical software with result verification is based on the assumption that we...
We are concerned with interval constraints: solving constraints among real unknowns in such a way th...
We propose an arithmetic of function intervals as a basis for convenient rigorous numerical computat...
Design automation requires reliable methods for solving the equations describing the perfor-mance of...
Interval arithmetic is a means to compute verified results. However, a naive use of interval arithme...
Interval constraints can be used to solve problems in numerical analysis. In this paper we show that...
We propose here a number of approaches to implement constraint propagation for arithmetic constraint...
Nowadays, more and more calculations, including monitoring and control, are done by software. Our go...
land This paper presents the Python implementation of an interval system in the extended real set th...
accepted to IWANN 07 conferenceThis paper contribution is about guaranteed numerical methods based o...
We propose a method of using validated interval constraint contraction operators to build routines f...
International audienceThis paper presents a set of tools for mechanical reasoning of numerical bound...
Abstract. We present in this paper a library to compute with Taylor models, a technique extending in...
We present in this report a library to compute with Taylor models, a technique extending interval ar...
Primary Audience for the Book • Specialists in numerical computations who are interested in algorith...
Traditional design of numerical software with result verification is based on the assumption that we...
We are concerned with interval constraints: solving constraints among real unknowns in such a way th...
We propose an arithmetic of function intervals as a basis for convenient rigorous numerical computat...
Design automation requires reliable methods for solving the equations describing the perfor-mance of...
Interval arithmetic is a means to compute verified results. However, a naive use of interval arithme...
Interval constraints can be used to solve problems in numerical analysis. In this paper we show that...
We propose here a number of approaches to implement constraint propagation for arithmetic constraint...
Nowadays, more and more calculations, including monitoring and control, are done by software. Our go...
land This paper presents the Python implementation of an interval system in the extended real set th...
accepted to IWANN 07 conferenceThis paper contribution is about guaranteed numerical methods based o...
We propose a method of using validated interval constraint contraction operators to build routines f...