The main results of this article are certain connections between braid groups and the homotopy groups of the 2-sphere. The connections are given in terms of Brunnian braids over the disk and over the 2-sphere. The techniques arise from the natural structure of simplicial and ∆-structures on fundamental groups of configuration spaces
47 pages, 5 figuresInternational audienceWe give a survey of the theory of surface braid groups and ...
Em Artin (1925), Artin introduziu o estudo do grupo de tranças, o qual está intimamente relacionado ...
Em Artin (1925), Artin introduziu o estudo do grupo de tranças, o qual está intimamente relacionado ...
10.1090/S0894-0347-05-00507-2Journal of the American Mathematical Society192265-32
A relação entre os grupos de tranças de superfícies e os grupos de homotopia das esferas é atualment...
A relação entre os grupos de tranças de superfícies e os grupos de homotopia das esferas é atualment...
This project explored the solution to the word problem of braids over the 2-sphere as presented in [...
This article is an exposition of certain connections between the braid groups, classical homotopy gr...
In this snapshot we introduce configuration spaces and explain how a mathematician studies their ‘sh...
Abstract. We study the Brunnian subgroups and the boundary Brunnian subgroups of the Artin braid gro...
A configuration space is a space whose points represent the possible states of a given physical syst...
A configuration space is a space whose points represent the possible states of a given physical syst...
For any tangle T (up to isotopy) and integer k >= 1 we construct a group F(T) (up to isomorphism). I...
47 pages, 5 figuresInternational audienceWe give a survey of the theory of surface braid groups and ...
The symmetric group is a classic example in group theory and combinatorics, with many applications i...
47 pages, 5 figuresInternational audienceWe give a survey of the theory of surface braid groups and ...
Em Artin (1925), Artin introduziu o estudo do grupo de tranças, o qual está intimamente relacionado ...
Em Artin (1925), Artin introduziu o estudo do grupo de tranças, o qual está intimamente relacionado ...
10.1090/S0894-0347-05-00507-2Journal of the American Mathematical Society192265-32
A relação entre os grupos de tranças de superfícies e os grupos de homotopia das esferas é atualment...
A relação entre os grupos de tranças de superfícies e os grupos de homotopia das esferas é atualment...
This project explored the solution to the word problem of braids over the 2-sphere as presented in [...
This article is an exposition of certain connections between the braid groups, classical homotopy gr...
In this snapshot we introduce configuration spaces and explain how a mathematician studies their ‘sh...
Abstract. We study the Brunnian subgroups and the boundary Brunnian subgroups of the Artin braid gro...
A configuration space is a space whose points represent the possible states of a given physical syst...
A configuration space is a space whose points represent the possible states of a given physical syst...
For any tangle T (up to isotopy) and integer k >= 1 we construct a group F(T) (up to isomorphism). I...
47 pages, 5 figuresInternational audienceWe give a survey of the theory of surface braid groups and ...
The symmetric group is a classic example in group theory and combinatorics, with many applications i...
47 pages, 5 figuresInternational audienceWe give a survey of the theory of surface braid groups and ...
Em Artin (1925), Artin introduziu o estudo do grupo de tranças, o qual está intimamente relacionado ...
Em Artin (1925), Artin introduziu o estudo do grupo de tranças, o qual está intimamente relacionado ...