ABSTRACT. – We are concerned with the existence and uniqueness of local or global solutions for slightly compressible viscous fluids in the whole space. In [6] and [7], we proved local and global well-posedness results for initial data in critical spaces very close to the one used by H. Fujita and T. Kato for incompressible flows (see [14]). In the present paper, we address the question of convergence to the incompressible model (for ill-prepared initial data) when the Mach number goes to zero. When the initial data are small in a critical space, we get global existence and convergence. For large initial data and a bit of additional regularity, the slightly compressible solution is shown to exist as long as the corresponding incompressible ...
Funder: Einstein Stiftung Berlin; doi: http://dx.doi.org/10.13039/501100006188Funder: John Simon Gug...
Global COE Program Education-and-Research Hub for Mathematics-for-IndustryグローバルCOEプログラム「マス・フォア・インダスト...
Nous établissons dans cette Note un résultat local de convergence faible des solutions des équations...
Abstract. We address the question of convergence to the incompressible Navier-Stokes equations for s...
In this survey paper, we are concerned with the zero Mach number limit for compressible viscous f...
In this survey paper, we are concerned with the zero Mach number limit for compressible viscous f...
In this survey paper, we are concerned with the zero Mach number limit for compressible viscous f...
AbstractWe prove various asymptotic results concerning global (weak) solutions of compressible isent...
Nous prouvons divers résultats asymptotiques concernant les solutions (faibles) globales des équatio...
Next, we consider that the fluids are isentropic and the domain is also bounded, smooth, simply conn...
International audienceThe present paper is dedicated to the global well-posedness issue for the baro...
International audienceThis paper aims at justifying the low Mach number convergence to the incompres...
Many interesting problems in classical physics involve the behavior of solutions of nonlinear hyperb...
To appear in Communications in Contemporary Mathematics. First version was submitted on Feb. 28th, 2...
This paper is devoted to the low Mach number limit of weak solutions to the com-pressible Navier{Sto...
Funder: Einstein Stiftung Berlin; doi: http://dx.doi.org/10.13039/501100006188Funder: John Simon Gug...
Global COE Program Education-and-Research Hub for Mathematics-for-IndustryグローバルCOEプログラム「マス・フォア・インダスト...
Nous établissons dans cette Note un résultat local de convergence faible des solutions des équations...
Abstract. We address the question of convergence to the incompressible Navier-Stokes equations for s...
In this survey paper, we are concerned with the zero Mach number limit for compressible viscous f...
In this survey paper, we are concerned with the zero Mach number limit for compressible viscous f...
In this survey paper, we are concerned with the zero Mach number limit for compressible viscous f...
AbstractWe prove various asymptotic results concerning global (weak) solutions of compressible isent...
Nous prouvons divers résultats asymptotiques concernant les solutions (faibles) globales des équatio...
Next, we consider that the fluids are isentropic and the domain is also bounded, smooth, simply conn...
International audienceThe present paper is dedicated to the global well-posedness issue for the baro...
International audienceThis paper aims at justifying the low Mach number convergence to the incompres...
Many interesting problems in classical physics involve the behavior of solutions of nonlinear hyperb...
To appear in Communications in Contemporary Mathematics. First version was submitted on Feb. 28th, 2...
This paper is devoted to the low Mach number limit of weak solutions to the com-pressible Navier{Sto...
Funder: Einstein Stiftung Berlin; doi: http://dx.doi.org/10.13039/501100006188Funder: John Simon Gug...
Global COE Program Education-and-Research Hub for Mathematics-for-IndustryグローバルCOEプログラム「マス・フォア・インダスト...
Nous établissons dans cette Note un résultat local de convergence faible des solutions des équations...