Abstract. We prove a functional central limit theorem for the empirical pro-cess of a stationary process Xt = Yt + Vt, where Yt is a long memory mov-ing average in i.i.d. r.v.’s ζs, s ≤ t, and Vt = V (ζt, ζt−1,...) is a weakly de-pendent nonlinear Bernoulli shift. Conditions of weak dependence of Vt are written in terms of L2−norms of shift-cut differences V (ζt,..., ζt−n, 0,..., ) − V (ζt,..., ζt−n+1, 0,...). Examples of Bernoulli shifts are discussed. The limit empirical process is a degenerated process of the form f(x)Z, where f is the marginal p.d.f. of X0 and Z is a standard normal r.v. The proof is based on a uniform reduction principle for the empirical process.
We introduce a new interpretation of a phenomenon followed by certain subsequent learning experiment...
Abstract. We study the asymptotic behavior of the empirical process when the underlying data are Gau...
International audienceLet $(U_n(t))_{t\in\R^d}$ be the empirical process associated to an $\R^d$-val...
International audienceWe prove a functional central limit theorem for the empirical process of a sta...
We discuss the functional central limit theorem (FCLT) for the empirical process of a moving-average...
Let {Xt,t≥1} be a moving average process defined byXt = ∞∑j=0bjξt-j , where {bj,j≥0} is a sequence o...
We derive functional limit theorems for the integrated periodogram of linear processes whose innovat...
We establish a functional central limit theorem for the empirical process of bivariate stationary lo...
AbstractWe derive functional limit theorems for the integrated periodogram of linear processes whose...
We present a functional limit theorem for the empirical level-crossing behaviour of a stationary Gau...
This paper considers the short- and long-memory linear processes with GARCH (1,1) noises. The functi...
We provide an asymptotic result for the distribution of functionals of continuous Gaussian processes...
This note discusses limit theorems for a sequence of ex-tremal processes associated with a Bernoulli...
We prove a general functional central limit theorem for weak dependent time series. Those probabilis...
Let Xt be a moving average process defined by Xt=[summation operator]k=0[infinity][psi]k[var epsilon...
We introduce a new interpretation of a phenomenon followed by certain subsequent learning experiment...
Abstract. We study the asymptotic behavior of the empirical process when the underlying data are Gau...
International audienceLet $(U_n(t))_{t\in\R^d}$ be the empirical process associated to an $\R^d$-val...
International audienceWe prove a functional central limit theorem for the empirical process of a sta...
We discuss the functional central limit theorem (FCLT) for the empirical process of a moving-average...
Let {Xt,t≥1} be a moving average process defined byXt = ∞∑j=0bjξt-j , where {bj,j≥0} is a sequence o...
We derive functional limit theorems for the integrated periodogram of linear processes whose innovat...
We establish a functional central limit theorem for the empirical process of bivariate stationary lo...
AbstractWe derive functional limit theorems for the integrated periodogram of linear processes whose...
We present a functional limit theorem for the empirical level-crossing behaviour of a stationary Gau...
This paper considers the short- and long-memory linear processes with GARCH (1,1) noises. The functi...
We provide an asymptotic result for the distribution of functionals of continuous Gaussian processes...
This note discusses limit theorems for a sequence of ex-tremal processes associated with a Bernoulli...
We prove a general functional central limit theorem for weak dependent time series. Those probabilis...
Let Xt be a moving average process defined by Xt=[summation operator]k=0[infinity][psi]k[var epsilon...
We introduce a new interpretation of a phenomenon followed by certain subsequent learning experiment...
Abstract. We study the asymptotic behavior of the empirical process when the underlying data are Gau...
International audienceLet $(U_n(t))_{t\in\R^d}$ be the empirical process associated to an $\R^d$-val...