Let G be a connected reductive algebraic group defined over an algebraic closure of a finite field and let F: G → G be an endomorphism such that Fδ is a Frobenius endomorphism for some δ 1. Let P be a parabolic subgroup of G. We prove that the Deligne–Lusztig variety {gP | g−1F(g) ∈ P · F(P)} is irreducible if and only if P is not contained in a proper F-stable paraboli
Let $G$ be a connected reductive group defined over a finite field $\mathbb{F}_q$ of characteristic ...
Abstract. Let P be a parabolic subgroup of a semisimple simply con-nected linear algebraic group G o...
Let $\mathbf{G}$ be a connected reductive algebraic group defined over an algebraic closure of the f...
4 pagesInternational audienceLet $G$ be a connected reductive algebraic group defined over an algebr...
Let k be a field with q elements, and let k ̄ be an algebraic closure of k. Let σ denote the Frobeni...
Let G = G(F) be the F-rational points of a reductive algebraic group G over a finite field F. Let P ...
AbstractLet G be a reductive algebraic group over an algebraic closure of a prime field Fp, defined ...
Abstract. Let G be a connected reductive algebraic group defined over the finite field Fq, where q i...
Let X be an equivariant embedding of a connected reductive group G over an algebraically closed fiel...
Let $G=G(K)$ be a simple algebraic group defined over an algebraically closed field $K$ of character...
Abstract. In the joint paper [10], the authors established a connection be-tween representations of ...
Abstract. Let G be a connected reductive algebraic group defined over Fq, where q is a power of a pr...
Let G be a reductive algebraic group and let H be a reductive subgroup of G. We describe all pairs (...
Let G be a connected algebraic reductive group in types A, B, or D, and e be a nilpotent element of ...
Let G be a connected reductive algebraic group over an algebraically closed field k of characteristi...
Let $G$ be a connected reductive group defined over a finite field $\mathbb{F}_q$ of characteristic ...
Abstract. Let P be a parabolic subgroup of a semisimple simply con-nected linear algebraic group G o...
Let $\mathbf{G}$ be a connected reductive algebraic group defined over an algebraic closure of the f...
4 pagesInternational audienceLet $G$ be a connected reductive algebraic group defined over an algebr...
Let k be a field with q elements, and let k ̄ be an algebraic closure of k. Let σ denote the Frobeni...
Let G = G(F) be the F-rational points of a reductive algebraic group G over a finite field F. Let P ...
AbstractLet G be a reductive algebraic group over an algebraic closure of a prime field Fp, defined ...
Abstract. Let G be a connected reductive algebraic group defined over the finite field Fq, where q i...
Let X be an equivariant embedding of a connected reductive group G over an algebraically closed fiel...
Let $G=G(K)$ be a simple algebraic group defined over an algebraically closed field $K$ of character...
Abstract. In the joint paper [10], the authors established a connection be-tween representations of ...
Abstract. Let G be a connected reductive algebraic group defined over Fq, where q is a power of a pr...
Let G be a reductive algebraic group and let H be a reductive subgroup of G. We describe all pairs (...
Let G be a connected algebraic reductive group in types A, B, or D, and e be a nilpotent element of ...
Let G be a connected reductive algebraic group over an algebraically closed field k of characteristi...
Let $G$ be a connected reductive group defined over a finite field $\mathbb{F}_q$ of characteristic ...
Abstract. Let P be a parabolic subgroup of a semisimple simply con-nected linear algebraic group G o...
Let $\mathbf{G}$ be a connected reductive algebraic group defined over an algebraic closure of the f...