In this paper we systematically derive a large class of fast general-radix algorithms for various types of real discrete Fourier transforms (real DFTs) including the discrete Hartley transform (DHT) based on the algebraic signal pro-cessing theory. This means that instead of manipulating the transform definition, we derive algorithms by manipulating the polynomial algebras underlying the transforms using one general method. The same method yields the well-known Cooley-Tukey fast Fourier transform (FFT) as well as general radix discrete cosine and sine transform algorithms. The algebraic approach makes the derivation concise, unifies and classifies many existing algorithms, yields new variants, enables structural optimization, and naturally ...