We use covariant and first-order formalism techniques to study the properties of general relativistic cosmology in three dimensions. The covariant approach provides an irreducible decomposition of the relativistic equations, which allows for a mathematically compact and physically transparent description of the three-dimensional spacetimes. Using this information we review the features of homogeneous and isotropic 3D cosmologies, provide a number of new solutions and study gauge invariant perturbations around them. The first-order formalism is then used to provide a detailed study of the most general 3D spacetimes containing perfect-fluid matter. Assuming the material content to be dust with comoving spatial 2-velocities, we find the genera...