This document1 is an introduction to the definition and use of inductive and co-inductive types in the Coq proof environment. It explains how types like natural numbers and infinite streams are defined in Coq, and the kind of proof techniques that can be used to reason about them (case analysis, induc-tion, inversion of predicates, co-induction, etc). Each technique is illustrated through an executable and self-contained Coq script
Abstract. We propose a new language for writing programs with de-pendent types which can be elaborat...
Abstract. We propose a new language for writing programs with de-pendent types on top of the Coq pro...
In order to avoid well-known paradoxes associated with self-referential definitions, higher-order de...
This document1 is an introduction to the definition and use of inductive and co-inductive types in t...
Révision complète d'une présentation des constructions inductives et coinductives en Coq
Révision complète d'une présentation des constructions inductives et coinductives en Coq
Révision complète d'une présentation des constructions inductives et coinductives en Coq
Révision complète d'une présentation des constructions inductives et coinductives en Coq
Révision complète d'une présentation des constructions inductives et coinductives en Coq
International audienceThis paper gives an introduction to the Calculus of Inductive Constructions, t...
International audienceThis paper gives an introduction to the Calculus of Inductive Constructions, t...
International audienceThis paper gives an introduction to the Calculus of Inductive Constructions, t...
International audienceThis paper gives an introduction to the Calculus of Inductive Constructions, t...
Computer proof assistants vary along many dimensions. Among the mature implementations, the Coq syst...
Projet COQThis document is an introduction to the definition and use of recursive types in the Coq p...
Abstract. We propose a new language for writing programs with de-pendent types which can be elaborat...
Abstract. We propose a new language for writing programs with de-pendent types on top of the Coq pro...
In order to avoid well-known paradoxes associated with self-referential definitions, higher-order de...
This document1 is an introduction to the definition and use of inductive and co-inductive types in t...
Révision complète d'une présentation des constructions inductives et coinductives en Coq
Révision complète d'une présentation des constructions inductives et coinductives en Coq
Révision complète d'une présentation des constructions inductives et coinductives en Coq
Révision complète d'une présentation des constructions inductives et coinductives en Coq
Révision complète d'une présentation des constructions inductives et coinductives en Coq
International audienceThis paper gives an introduction to the Calculus of Inductive Constructions, t...
International audienceThis paper gives an introduction to the Calculus of Inductive Constructions, t...
International audienceThis paper gives an introduction to the Calculus of Inductive Constructions, t...
International audienceThis paper gives an introduction to the Calculus of Inductive Constructions, t...
Computer proof assistants vary along many dimensions. Among the mature implementations, the Coq syst...
Projet COQThis document is an introduction to the definition and use of recursive types in the Coq p...
Abstract. We propose a new language for writing programs with de-pendent types which can be elaborat...
Abstract. We propose a new language for writing programs with de-pendent types on top of the Coq pro...
In order to avoid well-known paradoxes associated with self-referential definitions, higher-order de...