Abstract. We study the self-adjoint and dissipative realization A of a second order elliptic differential operator A with unbounded regular coefficients in L2(RN, µ), where µ(dx) = ρ(x)dx is the associated invariant measure. We prove a maximal regularity result under suitable assumptions, that generalize the well known conditions in the case of constant diffusion part. 1
We consider a homogeneous elliptic Dirichlet problem involving an Ornstein-Uhlenbeck operator in a h...
AbstractWe study regularity properties for invariant measures of semilinear diffusions in a separabl...
AbstractIn this paper, we study a suitable notion of solution for which a nonlinear elliptic problem...
AbstractWe consider the operator Au=Δu/2−〈DU,Du〉, where U is a convex real function defined in a con...
We study a class of elliptic operators $L$ that degenerate at the boundary of a bounded open set $O...
We study the realization A_N of the operator A = 1/2 \Delta - in L^2(Omega, mu) with Neumann bounda...
We prove boundedness and sharp pointwise upper bounds for (the densities of) invariant measures of M...
Abstract. We show that the elliptic operator Au = div(a∇u) + b · ∇u has the domain D(A) = {u ∈ W 2,...
AbstractWe prove an optimal embedding result for the domains of Kolmogorov (or degenerate hypoellipt...
This paper is devoted to the study of the existence and uniqueness of the invariant measure associat...
Albeverio S, Bogachev V, Röckner M. On uniqueness of invariant measures for finite- and infinite-dim...
Bogachev VI, Krylov N, Röckner M. Regularity of invariant measures: The case of non-constant diffusi...
We give a characterization of linear elliptic operators of the second order in divergence form with ...
AbstractWe prove regularity (i.e., smoothness) of measuresμon Rdsatisfying the equationL*μ=0 whereLi...
We prove an optimal embedding result for the domains of Kolmogorov (or degenerate hypoelliptic Ornst...
We consider a homogeneous elliptic Dirichlet problem involving an Ornstein-Uhlenbeck operator in a h...
AbstractWe study regularity properties for invariant measures of semilinear diffusions in a separabl...
AbstractIn this paper, we study a suitable notion of solution for which a nonlinear elliptic problem...
AbstractWe consider the operator Au=Δu/2−〈DU,Du〉, where U is a convex real function defined in a con...
We study a class of elliptic operators $L$ that degenerate at the boundary of a bounded open set $O...
We study the realization A_N of the operator A = 1/2 \Delta - in L^2(Omega, mu) with Neumann bounda...
We prove boundedness and sharp pointwise upper bounds for (the densities of) invariant measures of M...
Abstract. We show that the elliptic operator Au = div(a∇u) + b · ∇u has the domain D(A) = {u ∈ W 2,...
AbstractWe prove an optimal embedding result for the domains of Kolmogorov (or degenerate hypoellipt...
This paper is devoted to the study of the existence and uniqueness of the invariant measure associat...
Albeverio S, Bogachev V, Röckner M. On uniqueness of invariant measures for finite- and infinite-dim...
Bogachev VI, Krylov N, Röckner M. Regularity of invariant measures: The case of non-constant diffusi...
We give a characterization of linear elliptic operators of the second order in divergence form with ...
AbstractWe prove regularity (i.e., smoothness) of measuresμon Rdsatisfying the equationL*μ=0 whereLi...
We prove an optimal embedding result for the domains of Kolmogorov (or degenerate hypoelliptic Ornst...
We consider a homogeneous elliptic Dirichlet problem involving an Ornstein-Uhlenbeck operator in a h...
AbstractWe study regularity properties for invariant measures of semilinear diffusions in a separabl...
AbstractIn this paper, we study a suitable notion of solution for which a nonlinear elliptic problem...