Abstract. We provide a syntax and a derivation system for a formal language of mathematics called Weak Type Theory (WTT). We give the metatheory of WTT and a number of illustrative examples. WTT is a refinement of de Bruijn’s Mathematical Vernacular (MV) and hence: WTT is faithful to the mathematician’s language yet is formal and avoids ambiguities. WTT is close to the usual way in which mathematicians express themselves in writing. WTT has a syntax based on linguistic categories instead of set/type theoretic constructs. More so than MV however, WTT has a precise abstract syntax whose derivation rules resemble those of modern type theory enabling us to establish important desirable properties of W TT such as strong normalisation, decidab...