while constraining an energy norm of the error to be tem-porally bounded for all t. 0 by a constant proportionalAn algorithm which solves the multidimensional diffusion equa-tion on complex shapes to fourth-order accuracy and is asymptoti- to the truncation error. cally stable in time is presented. This bounded-error result is In Section 3 it is shown how the methodology developed achieved by constructing, on a rectangular grid, a differentiation in Section 2 is used as a building block for the multidimen-matrix whose symmetric part is negative definite. The differentiation sional algorithm, even for irregular shapes containingmatrix accounts for the Dirichlet boundary condition by imposing ‘‘holes’’.penalty-like terms. Numerical examples i...
An efficient higher-order finite difference algorithm is presented in this article for solving syste...
In fact, the heat equation with Dirichlet boundary conditions has analytical solutions for a number ...
Two numerical algorithms based on H1-Galerkin mixed finite element (GMFE) methods are presented and ...
An algorithm is presented which solves the multi-dimensional diffusion equation on co mplex shapes t...
In [l] an economical scheme is put forward for the heat conduction equa-tion with accuracy O(h ” + T...
The numerical solution of multidimensional wave-propagation problems is considerably more complex th...
Abstract. We introduce a new approach to high-order accuracy for the numerical solution of diffusion...
In a previous paper, Morel and Montry used a Galerkin-based diffusion analysis to define a particula...
We discuss an efficient higher order finite difference algorithm for solving systems of 3-D reaction...
In this work, accurate solutions to linear and nonlinear diffusion equations were introduced. A poly...
The basic problem addressed in the project was that of accelerating the iterative convergence of Dis...
Complex diffusion is a common and broadly used denoising procedure in image processing. The method ...
Abstract. In this paper we present a rigorous proof for the stability of a class of finite differenc...
Abstract. The Mimetic Discretization Method (often called Mimetic Finite Difference method in the li...
Abstract: An algorithm for solving the diffusion equation in R-Z geometry by the Differenc...
An efficient higher-order finite difference algorithm is presented in this article for solving syste...
In fact, the heat equation with Dirichlet boundary conditions has analytical solutions for a number ...
Two numerical algorithms based on H1-Galerkin mixed finite element (GMFE) methods are presented and ...
An algorithm is presented which solves the multi-dimensional diffusion equation on co mplex shapes t...
In [l] an economical scheme is put forward for the heat conduction equa-tion with accuracy O(h ” + T...
The numerical solution of multidimensional wave-propagation problems is considerably more complex th...
Abstract. We introduce a new approach to high-order accuracy for the numerical solution of diffusion...
In a previous paper, Morel and Montry used a Galerkin-based diffusion analysis to define a particula...
We discuss an efficient higher order finite difference algorithm for solving systems of 3-D reaction...
In this work, accurate solutions to linear and nonlinear diffusion equations were introduced. A poly...
The basic problem addressed in the project was that of accelerating the iterative convergence of Dis...
Complex diffusion is a common and broadly used denoising procedure in image processing. The method ...
Abstract. In this paper we present a rigorous proof for the stability of a class of finite differenc...
Abstract. The Mimetic Discretization Method (often called Mimetic Finite Difference method in the li...
Abstract: An algorithm for solving the diffusion equation in R-Z geometry by the Differenc...
An efficient higher-order finite difference algorithm is presented in this article for solving syste...
In fact, the heat equation with Dirichlet boundary conditions has analytical solutions for a number ...
Two numerical algorithms based on H1-Galerkin mixed finite element (GMFE) methods are presented and ...