Conjugated polymers are attractive semiconductors for photovoltaic cells because they are strong absorbers and can be deposited on flexible substrates at low cost. Cells made with a single polymer and two electrodes tend to be inefficient because the photogenerated excitons are usually not split by the built-in electric field, which arises from differences in the electrode work functions. The efficiency can be increased by splitting the excitons at an interface between two semiconductors with offset energy levels. Power conversion efficiencies of almost 4 % have been achieved by blending polymers with electron-accepting materials such as C60 derivatives, cadmium selenide, and titanium dioxide. We predict that efficiencies higher than 10 % c...