Explicit conditions are presented for the existence, uniqueness, and ergodicity of the strong solution to a class of generalized stochastic porous media equations. Our estimate of the convergence rate is sharp according to the known optimal decay for the solution of the classical (deterministic) porous medium equation
International audienceWe study the existence and uniqueness of solution to stochastic porous media e...
gemeinschaft getragenen Sonderforschungsbereichs 611 an der Universität Bonn entstanden und als Manu...
Gess B. Strong solutions for stochastic partial differential equations of gradient type. Journal of ...
Explicit conditions are presented for the existence, uniqueness and ergodicity of the strong solutio...
Da Prato G, Röckner M, Rozovskii BL, Wang F-Y. Strong solutions of stochastic generalized porous med...
Barbu V, Da Prato G, Röckner M. Existence of strong solutions for stochastic porous media equation u...
Existence of strong solutions for Stochastic porous media equation under general monotonicity condit...
AbstractBy using the Nash inequality and a monotonicity approximation argument, existence and unique...
By using the Nash inequality and a monotonicity approximation argument, ex-istence and uniqueness of...
By using the Nash inequality and a monotonicity approximation argument, ex-istence and uniqueness of...
Röckner M, Wang F-Y, Zhang T. Stochastic generalized porous media equations with reflection. Stochas...
We prove global well-posedness in the strong sense for stochastic generalized porous media equations...
Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, a...
Barbu V, Da Prato G, Röckner M. Stochastic Porous Media Equations and Self-Organized Criticality. Co...
Da Prato G, Röckner M. Weak solutions to stochastic porous media equations. Journal of Evolution Equ...
International audienceWe study the existence and uniqueness of solution to stochastic porous media e...
gemeinschaft getragenen Sonderforschungsbereichs 611 an der Universität Bonn entstanden und als Manu...
Gess B. Strong solutions for stochastic partial differential equations of gradient type. Journal of ...
Explicit conditions are presented for the existence, uniqueness and ergodicity of the strong solutio...
Da Prato G, Röckner M, Rozovskii BL, Wang F-Y. Strong solutions of stochastic generalized porous med...
Barbu V, Da Prato G, Röckner M. Existence of strong solutions for stochastic porous media equation u...
Existence of strong solutions for Stochastic porous media equation under general monotonicity condit...
AbstractBy using the Nash inequality and a monotonicity approximation argument, existence and unique...
By using the Nash inequality and a monotonicity approximation argument, ex-istence and uniqueness of...
By using the Nash inequality and a monotonicity approximation argument, ex-istence and uniqueness of...
Röckner M, Wang F-Y, Zhang T. Stochastic generalized porous media equations with reflection. Stochas...
We prove global well-posedness in the strong sense for stochastic generalized porous media equations...
Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, a...
Barbu V, Da Prato G, Röckner M. Stochastic Porous Media Equations and Self-Organized Criticality. Co...
Da Prato G, Röckner M. Weak solutions to stochastic porous media equations. Journal of Evolution Equ...
International audienceWe study the existence and uniqueness of solution to stochastic porous media e...
gemeinschaft getragenen Sonderforschungsbereichs 611 an der Universität Bonn entstanden und als Manu...
Gess B. Strong solutions for stochastic partial differential equations of gradient type. Journal of ...