Abstract. We show that a space is MCP (monotone countable para-compact) if and only if it has property (∗), introduced by Teng, Xia and Lin. The relationship between MCP and stratifiability is highlighted by a similar characterization of stratifiability. Using this result, we prove that MCP is preserved by both countably biquotient closed and periph-erally countably compact closed mappings, from which it follows that both strongly Fréchet spaces and q-space closed images of MCP spaces are MCP. Some results on closed images of wN spaces are also noted. A space X is said to be monotonically countably metacompact (MCM) (see [1]) if there is an operator U assigning to each decreasing sequence (Dj)j∈ω of closed sets with empty intersection, a s...
According to Mack a space is countably paracompact if and only if its product with [0, 1] is δ-norma...
Monotonic versions of classical topological properties have been of some interest for several years....
AbstractSome new results on relationships between cardinal invariants in compacta are obtained. We e...
summary:We show that a space is MCP (monotone countable paracompact) if and only if it has property ...
summary:We show that a space is MCP (monotone countable paracompact) if and only if it has property ...
summary:We show that a space is MCP (monotone countable paracompact) if and only if it has property ...
AbstractWe study a monotone version of countable paracompactness, MCP, and of countable metacompactn...
AbstractWe study a monotone version of countable paracompactness, MCP, and of countable metacompactn...
AbstractOne possible natural monotone version of countable paracompactness, MCP, turns out to have s...
AbstractIn this note, we show that a monotonically normal space that is monotonically countably meta...
One possible natural monotone version of countable paracompactness, MCP, turns out to have some inte...
AbstractWe prove that the following statements are equivalent for a space X: (1) X is monotonically ...
AbstractAccording to Mack a space is countably paracompact if and only if its product with [0,1] is ...
AbstractWe show that any metacompact Moore space is monotonically metacompact and use that result to...
We show that, if an MCP (monotonically countably paracompact) space fails to be collectionwise Hausd...
According to Mack a space is countably paracompact if and only if its product with [0, 1] is δ-norma...
Monotonic versions of classical topological properties have been of some interest for several years....
AbstractSome new results on relationships between cardinal invariants in compacta are obtained. We e...
summary:We show that a space is MCP (monotone countable paracompact) if and only if it has property ...
summary:We show that a space is MCP (monotone countable paracompact) if and only if it has property ...
summary:We show that a space is MCP (monotone countable paracompact) if and only if it has property ...
AbstractWe study a monotone version of countable paracompactness, MCP, and of countable metacompactn...
AbstractWe study a monotone version of countable paracompactness, MCP, and of countable metacompactn...
AbstractOne possible natural monotone version of countable paracompactness, MCP, turns out to have s...
AbstractIn this note, we show that a monotonically normal space that is monotonically countably meta...
One possible natural monotone version of countable paracompactness, MCP, turns out to have some inte...
AbstractWe prove that the following statements are equivalent for a space X: (1) X is monotonically ...
AbstractAccording to Mack a space is countably paracompact if and only if its product with [0,1] is ...
AbstractWe show that any metacompact Moore space is monotonically metacompact and use that result to...
We show that, if an MCP (monotonically countably paracompact) space fails to be collectionwise Hausd...
According to Mack a space is countably paracompact if and only if its product with [0, 1] is δ-norma...
Monotonic versions of classical topological properties have been of some interest for several years....
AbstractSome new results on relationships between cardinal invariants in compacta are obtained. We e...