Abstract. Let Xi, i ∈ N, be i.i.d. B-valued random variables, where B is a real separable Banach space. Let Φ: B → R be a mapping. The problem is to give an asymptotic evaluation of Zn = E (exp (nΦ( ∑n i=1 Xi/n))), up to a factor (1 + o(1)). Bolthausen [1] studied this problem in the case that there is a unique point maximiz-ing Φ−h, where h is the so-called entropy function, and the curvature at the maximum is nonvanishing, (these two will be called as nonde-generate assumptions), with some central limit theorem assumption. Kusuoka-Liang [5] studied the same problem, and succeeded in elim-inating the central limit theorem assumption, but the nondegenerate assumptions are still left. In this paper, we study the same problem not assuming the...
Abstract The author discusses necessary and sufficient conditions of the complete con-vergence for s...
AbstractLetybe a random vector in Rn, satisfyingEy⊗y=id.LetMbe a natural number and lety1, …, yMbe i...
AbstractLet (Xn)n⩾1 be a sequence of real random variables. The local score is Hn=max1⩽i<j⩽n(Xi+⋯+Xj...
Let $X_i, i \in {\bf N} $, be {\it i.i.d.} $B$-valued random variables, where $B$ is a real separabl...
SIGLETIB: RN 4586 (128) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische Informationsbi...
Let $ {\bf T}^d = {\bf R}^d / {\bf Z}^d $, and consider the family of probability measures $ \{ P_x ...
AbstractLet {Xn,n⩾1} be a sequence of i.i.d. random vectors taking values in a 2-smooth separable Ba...
We use Stein’s method to obtain explicit bounds on the rate of convergence for the Laplace approxima...
Abstract Let (B, ∥ · ∥) be a separable Banach space. Let Y, Y1, Y2, ... be centered i.i.d. random v...
We consider the asymptotic behavior of the convolution P n.pnA/ of a k-dimensional probability distr...
Abstract. Let Ln be the empirical measure of a uniformly er-godic nonreversible Markov chain on a co...
International audienceWe study the behaviour of the Riemann zeta function ζ(1 2 + it), when t is sam...
AbstractLet E be a Banach space. If the closed balls in E are a compact system, then for every E-val...
AbstractIn this paper, we establish asymptotic expansions for the Laplace approximations for Itô fun...
Diese Dissertation beschäftigt sich mit Erdös-Renyi und Shepp Gesetze sowie Csörgö-Revez ...
Abstract The author discusses necessary and sufficient conditions of the complete con-vergence for s...
AbstractLetybe a random vector in Rn, satisfyingEy⊗y=id.LetMbe a natural number and lety1, …, yMbe i...
AbstractLet (Xn)n⩾1 be a sequence of real random variables. The local score is Hn=max1⩽i<j⩽n(Xi+⋯+Xj...
Let $X_i, i \in {\bf N} $, be {\it i.i.d.} $B$-valued random variables, where $B$ is a real separabl...
SIGLETIB: RN 4586 (128) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische Informationsbi...
Let $ {\bf T}^d = {\bf R}^d / {\bf Z}^d $, and consider the family of probability measures $ \{ P_x ...
AbstractLet {Xn,n⩾1} be a sequence of i.i.d. random vectors taking values in a 2-smooth separable Ba...
We use Stein’s method to obtain explicit bounds on the rate of convergence for the Laplace approxima...
Abstract Let (B, ∥ · ∥) be a separable Banach space. Let Y, Y1, Y2, ... be centered i.i.d. random v...
We consider the asymptotic behavior of the convolution P n.pnA/ of a k-dimensional probability distr...
Abstract. Let Ln be the empirical measure of a uniformly er-godic nonreversible Markov chain on a co...
International audienceWe study the behaviour of the Riemann zeta function ζ(1 2 + it), when t is sam...
AbstractLet E be a Banach space. If the closed balls in E are a compact system, then for every E-val...
AbstractIn this paper, we establish asymptotic expansions for the Laplace approximations for Itô fun...
Diese Dissertation beschäftigt sich mit Erdös-Renyi und Shepp Gesetze sowie Csörgö-Revez ...
Abstract The author discusses necessary and sufficient conditions of the complete con-vergence for s...
AbstractLetybe a random vector in Rn, satisfyingEy⊗y=id.LetMbe a natural number and lety1, …, yMbe i...
AbstractLet (Xn)n⩾1 be a sequence of real random variables. The local score is Hn=max1⩽i<j⩽n(Xi+⋯+Xj...