This paper discusses our work on the reduction of nitric oxide (NO) by heme groups immobilized on electrode surfaces, which has been conducted in search for selective NO reduction catalysts. Results show two reduction pathways, one leading to the formation of N2O and another leading to the formation of NH2OH. By changing the conditions (pH, potential, NO concentration and immobilization method), 100 % selectivity toward either N2O or NH2OH can be obtained. A difference compared to NO re-ducing enzymes and metals is that immobilized heme groups do not reduce NH2OH further to NH3. Apparently, binding to an iso-lated heme group is insufficient to break the NeO bond. To cite this article: M.T. de Groot et al., C. R. Chimie 10 (2007). 2006 Acad...