In this paper two special convolution products ±(n=2 ¡ k ¡ 1)(u) ¤ ±(n=2 ¡ l ¡ 1)(u) and ±(n=2 ¡ k ¡ 1)(m2 + u) ¤ ±(n=2 ¡ l ¡ 1)(m2 + u) are expressed in terms of several known quantities. Let x = (x1;x2;:::xn) be a point of R n: We shall write x21 +::: + x 2 ¡ x2 +1 ¡:::x2 +º = u; (1) where + º = n. ¡+ denotes the interior of the forward cone ¡+ = fx 2 Rnj x1> 0; u> 0g; (2) and ¡+ denotes its closure. Similarly, ¡ ¡ denotes the domain ¡ ¡ = fx 2 Rnj x1 < 0; u> 0g (3) and ¡ ¡ denotes its closure. Let F (¸) be a function of the scalar variable ¸ , and let © = © (x) be a function endowed with the following properties: (i) © (x) = F (u); (ii) supp © (x) ¡+ and (iii) ehx;yi © (x) 2 L1 if y 2 V ¡ ; wher
En este artículo se le da un sentido al producto distribucional entre (fórmula) y (fórmula) usando l...
Let F be a distribution in D[superscript 1] and let f be a locally summable function. The compositio...
Title: New Integral Formulae in Hypercomplex Analysis Author: Mgr. Martin Sikora Department: Mathema...
The purpose of this paper is to obtain a relation between the distribution δ(2j)(r) and the operator...
AbstractLet P be a quadratic form in n variables and signature (p,q). The hypersurface P=0 is a hype...
In this paper we prove that the generalized functions d (k) (P+) - d (k) (P), d (k) (P-)-d (k) (-P) ...
AbstractWe introduce the distribution eαt□kδ where □k is an ultra-hyperbolic operator iterated k tim...
• ABSTRACT: Using the theory of distributions and Zeta regularization we manage to give a definition...
Abstract. Li Banghe and Li Yaqing defined in [1] the product S T as a hyper-distribution (we call h...
summary:The fixed infinitely differentiable function $\rho (x)$ is such that $\{n\rho (n x)\}$ is a ...
AbstractLet H′ be either the space K′1 of distributions of exponential growth or the space S′ of tem...
In this paper, Dirac delta function is revisited and we derive the N-th derivative of Dirac delta fu...
In this paper, Dirac delta function is revisited and we derive the N-th derivative of Dirac delta fu...
In this paper, Dirac delta function is revisited and we derive the N-th derivative of Dirac delta fu...
In this paper, we obtain a expansion in series (type Taylor) of distribution (formula) and give a n...
En este artículo se le da un sentido al producto distribucional entre (fórmula) y (fórmula) usando l...
Let F be a distribution in D[superscript 1] and let f be a locally summable function. The compositio...
Title: New Integral Formulae in Hypercomplex Analysis Author: Mgr. Martin Sikora Department: Mathema...
The purpose of this paper is to obtain a relation between the distribution δ(2j)(r) and the operator...
AbstractLet P be a quadratic form in n variables and signature (p,q). The hypersurface P=0 is a hype...
In this paper we prove that the generalized functions d (k) (P+) - d (k) (P), d (k) (P-)-d (k) (-P) ...
AbstractWe introduce the distribution eαt□kδ where □k is an ultra-hyperbolic operator iterated k tim...
• ABSTRACT: Using the theory of distributions and Zeta regularization we manage to give a definition...
Abstract. Li Banghe and Li Yaqing defined in [1] the product S T as a hyper-distribution (we call h...
summary:The fixed infinitely differentiable function $\rho (x)$ is such that $\{n\rho (n x)\}$ is a ...
AbstractLet H′ be either the space K′1 of distributions of exponential growth or the space S′ of tem...
In this paper, Dirac delta function is revisited and we derive the N-th derivative of Dirac delta fu...
In this paper, Dirac delta function is revisited and we derive the N-th derivative of Dirac delta fu...
In this paper, Dirac delta function is revisited and we derive the N-th derivative of Dirac delta fu...
In this paper, we obtain a expansion in series (type Taylor) of distribution (formula) and give a n...
En este artículo se le da un sentido al producto distribucional entre (fórmula) y (fórmula) usando l...
Let F be a distribution in D[superscript 1] and let f be a locally summable function. The compositio...
Title: New Integral Formulae in Hypercomplex Analysis Author: Mgr. Martin Sikora Department: Mathema...