Given a p> 2, we prove existence of global minimizers for a p-Ginzburg-Landau-type energy over maps on R2 with degree d = 1 at infinity. For the analogous problem on the half-plane we prove existence of a global minimizer when p is close to 2. The key ingredient of our proof is the degree reduction argument that allows us to construct a map of degree d = 1 from an arbitrary map of degree d> 1 without increasing the p-Ginzburg-Landau energy.
We classify nonconstant entire local minimizers of the standard Ginzburg–Landau functional for maps ...
In this article we study the minimizers of the functional $$ E_varepsilon(u,G)={1over p}int_G|abla u...
Survey on the existence of critical points of the Ginzburg-Landau energy with prescribed degrees. To...
AbstractGiven a p>2, we prove existence of global minimizers for a p-Ginzburg–Landau-type energy ove...
AbstractGiven a p>2, we prove existence of global minimizers for a p-Ginzburg–Landau-type energy ove...
Abstract We consider, in a smooth bounded multiply connected domain D ⊂ R 2 , the Ginzburg-Landau en...
Abstract. In this paper, it is proved that for any given d non-degenerate local minimum points of th...
We consider, in a smooth bounded multiply connected domain D ⊂ R2, the Ginzburg-Landau energy Eε(u) ...
Let $\mathcal{D} =\Omega\setminus\overline{\omega} \subset \mathbb{R}^2$ be a smooth annular type do...
Let $\mathcal{D} =\Omega\setminus\overline{\omega} \subset \mathbb{R}^2$ be a smooth annular type do...
We study global solutions $u:{\mathbb R}^3\to{\mathbb R}^2$ of the Ginzburg-Landau equation $-\Delta...
AbstractWe consider, in a smooth bounded multiply connected domain D⊂R2, the Ginzburg–Landau energy ...
International audienceAbstract. We study an energy of Ginzburg Landau problem E(u) with a weight dep...
International audienceLet G be a smooth bounded domain in R(2). Consider the functional E(epsilon) (...
International audienceWe study The energy of the Ginzburg-Landau in the case where the potential J h...
We classify nonconstant entire local minimizers of the standard Ginzburg–Landau functional for maps ...
In this article we study the minimizers of the functional $$ E_varepsilon(u,G)={1over p}int_G|abla u...
Survey on the existence of critical points of the Ginzburg-Landau energy with prescribed degrees. To...
AbstractGiven a p>2, we prove existence of global minimizers for a p-Ginzburg–Landau-type energy ove...
AbstractGiven a p>2, we prove existence of global minimizers for a p-Ginzburg–Landau-type energy ove...
Abstract We consider, in a smooth bounded multiply connected domain D ⊂ R 2 , the Ginzburg-Landau en...
Abstract. In this paper, it is proved that for any given d non-degenerate local minimum points of th...
We consider, in a smooth bounded multiply connected domain D ⊂ R2, the Ginzburg-Landau energy Eε(u) ...
Let $\mathcal{D} =\Omega\setminus\overline{\omega} \subset \mathbb{R}^2$ be a smooth annular type do...
Let $\mathcal{D} =\Omega\setminus\overline{\omega} \subset \mathbb{R}^2$ be a smooth annular type do...
We study global solutions $u:{\mathbb R}^3\to{\mathbb R}^2$ of the Ginzburg-Landau equation $-\Delta...
AbstractWe consider, in a smooth bounded multiply connected domain D⊂R2, the Ginzburg–Landau energy ...
International audienceAbstract. We study an energy of Ginzburg Landau problem E(u) with a weight dep...
International audienceLet G be a smooth bounded domain in R(2). Consider the functional E(epsilon) (...
International audienceWe study The energy of the Ginzburg-Landau in the case where the potential J h...
We classify nonconstant entire local minimizers of the standard Ginzburg–Landau functional for maps ...
In this article we study the minimizers of the functional $$ E_varepsilon(u,G)={1over p}int_G|abla u...
Survey on the existence of critical points of the Ginzburg-Landau energy with prescribed degrees. To...