Representing the image to be inpainted in an appropriate sparse dictionary, and combining elements from bayesian statistics, we introduce an expectation-maximization (EM) algorithm for im-age inpainting. From a statistical point of view, the inpainting can be viewed as an estimation problem with missing data. Towards this goal, we propose the idea of using the EM mechanism in a bayesian framework, where a sparsity promoting prior penalty is imposed on the reconstructed coefficients. The EM framework gives a principled way to establish formally the idea that missing samples can be recovered based on sparse representations. We first introduce an easy and efficient sparse-representation-based iterative algorithm for image inpainting. Additiona...