Circular sets of prime numbers and p-extensions of the rationals by Alexander Schmidt Abstract: Let p be an odd prime number and let S be a finite set of prime numbers congruent to 1 modulo p. We prove that the group GS(Q)(p) has cohomological dimension 2 if the linking diagram attached to S and p satisfies a certain technical condition, and we show that GS(Q)(p) is a duality group in these cases. Further-more, we investigate the decomposition behaviour of primes in the extension QS(p)/Q and we relate the cohomology of GS(Q)(p) to the étale cohomology of the scheme Spec(Z) − S. Finally, we calculate the dualizing module.
AbstractThe notions of modq cohomology and Tate–Farrell–Vogel cohomology of groups are introduced, w...
International audienceLet $F$ be a number field, abelian over the rational field, and fix a odd prim...
International audienceLet $F$ be a number field, abelian over the rational field, and fix a odd prim...
Zusammenfassung: Sei p eine ungerade Primzahl und S eine endliche Menge von Primzahlen kongruent 1 m...
Zusammenfassung: Sei p eine ungerade Primzahl und S eine endliche Menge von Primzahlen kongruent 1 m...
Abstract. Let K̃TS be the maximal pro-p-extension of the cyclotomic Zp-extension Kcyc of a number fi...
Abstract. Let d be a positive integer with d 6 ≡ 2 mod 4, and let K = Q(ζpd) for an odd prime p such...
Cohomology groups of units in Zdp-extensions by Mingzhi Xu (Columbus, Ohio) In this paper, K is an a...
The goal of this thesis is to classify all extensions where the kernel has order p^s and the cokerne...
International audienceLet $\KST$ be the maximal pro-$p$-extension of the cyclotomic $\Z_p$-extension...
International audienceLet $\KST$ be the maximal pro-$p$-extension of the cyclotomic $\Z_p$-extension...
AbstractThe notions of modq cohomology and Tate–Farrell–Vogel cohomology of groups are introduced, w...
80 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1999.Let K be a number field, p a r...
We introduce a criterion on the presentation of finitely presented pro-$p$ groups which allows us to...
AbstractLet p be an odd prime number. We relate the algebraic notion of a mod-p formal group law and...
AbstractThe notions of modq cohomology and Tate–Farrell–Vogel cohomology of groups are introduced, w...
International audienceLet $F$ be a number field, abelian over the rational field, and fix a odd prim...
International audienceLet $F$ be a number field, abelian over the rational field, and fix a odd prim...
Zusammenfassung: Sei p eine ungerade Primzahl und S eine endliche Menge von Primzahlen kongruent 1 m...
Zusammenfassung: Sei p eine ungerade Primzahl und S eine endliche Menge von Primzahlen kongruent 1 m...
Abstract. Let K̃TS be the maximal pro-p-extension of the cyclotomic Zp-extension Kcyc of a number fi...
Abstract. Let d be a positive integer with d 6 ≡ 2 mod 4, and let K = Q(ζpd) for an odd prime p such...
Cohomology groups of units in Zdp-extensions by Mingzhi Xu (Columbus, Ohio) In this paper, K is an a...
The goal of this thesis is to classify all extensions where the kernel has order p^s and the cokerne...
International audienceLet $\KST$ be the maximal pro-$p$-extension of the cyclotomic $\Z_p$-extension...
International audienceLet $\KST$ be the maximal pro-$p$-extension of the cyclotomic $\Z_p$-extension...
AbstractThe notions of modq cohomology and Tate–Farrell–Vogel cohomology of groups are introduced, w...
80 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1999.Let K be a number field, p a r...
We introduce a criterion on the presentation of finitely presented pro-$p$ groups which allows us to...
AbstractLet p be an odd prime number. We relate the algebraic notion of a mod-p formal group law and...
AbstractThe notions of modq cohomology and Tate–Farrell–Vogel cohomology of groups are introduced, w...
International audienceLet $F$ be a number field, abelian over the rational field, and fix a odd prim...
International audienceLet $F$ be a number field, abelian over the rational field, and fix a odd prim...