Abstract. We extend the localization techniques developed by Bloch to sim-plicial spaces. As applications, we give an extension of Bloch’s localization theorem for the higher Chow groups to schemes of finite type over a regu-lar scheme of dimension at most one (including mixed characteristic) and, relying on a fundamental result of Friedlander-Suslin, we globalize the Bloch-Lichtenbaum spectral sequence to give a spectral sequence converging to the G-theory of a scheme X, of finite type over a regular scheme of dimension one, with E1-term the motivic Borel-Moore homology. 1
Abstract. Let k be a field. Spivakovsky’s theorem on the solution of Hiron-aka’s polyhedral game has...
Motivated by a theorem in the K-theoretic setting relating the localization of K_0(X/T) over a close...
Let G be a split connected, reductive group scheme over the ring of integers of a finite extension o...
In this paper we consider three types of localization theorems for algebraic stacks: i) Concentrat...
Abstract. We show how to make the additive Chow groups of Bloch-Esnault, Rülling and Park into a gr...
We study families of algebraic spaces with a fiberwise $\mathbb{G}_m$-action and prove Braden's theo...
Abstract. In this thesis, I illustrate a new approach to the Gromov-Witten theory through localizati...
The goal of this note is to present some of the relationship between some “old-fashioned ” construct...
Thomason’s étale descent theorem for Bott periodic algebraic K–theory is generalized to any MGL modu...
AbstractLet (X,OX) be a noetherian formal scheme and consider Dqct(X) its derived category of sheave...
3 F-projective objects 4 A functor into sheaves 5 Relation to the Kazdhan-Lusztig conjecture 6 Bibli...
Abstract. The localization techniques for equivariant cohomology, due to Borel, Atiyah, Segal and Qu...
One of the main results of this article is a proof of the rank-one case of an existence conjecture o...
Consider the moduli space M of stable vector bundles over a curve. Verlinde's formulas give the coho...
Homology theories for algebraic varieties are often constructed using simplicial sets of algebraic c...
Abstract. Let k be a field. Spivakovsky’s theorem on the solution of Hiron-aka’s polyhedral game has...
Motivated by a theorem in the K-theoretic setting relating the localization of K_0(X/T) over a close...
Let G be a split connected, reductive group scheme over the ring of integers of a finite extension o...
In this paper we consider three types of localization theorems for algebraic stacks: i) Concentrat...
Abstract. We show how to make the additive Chow groups of Bloch-Esnault, Rülling and Park into a gr...
We study families of algebraic spaces with a fiberwise $\mathbb{G}_m$-action and prove Braden's theo...
Abstract. In this thesis, I illustrate a new approach to the Gromov-Witten theory through localizati...
The goal of this note is to present some of the relationship between some “old-fashioned ” construct...
Thomason’s étale descent theorem for Bott periodic algebraic K–theory is generalized to any MGL modu...
AbstractLet (X,OX) be a noetherian formal scheme and consider Dqct(X) its derived category of sheave...
3 F-projective objects 4 A functor into sheaves 5 Relation to the Kazdhan-Lusztig conjecture 6 Bibli...
Abstract. The localization techniques for equivariant cohomology, due to Borel, Atiyah, Segal and Qu...
One of the main results of this article is a proof of the rank-one case of an existence conjecture o...
Consider the moduli space M of stable vector bundles over a curve. Verlinde's formulas give the coho...
Homology theories for algebraic varieties are often constructed using simplicial sets of algebraic c...
Abstract. Let k be a field. Spivakovsky’s theorem on the solution of Hiron-aka’s polyhedral game has...
Motivated by a theorem in the K-theoretic setting relating the localization of K_0(X/T) over a close...
Let G be a split connected, reductive group scheme over the ring of integers of a finite extension o...