Abstract. Let X be a 1{connected cogroup-like space. If R is a ring, then a coho-mology (flat) product Hp+1(X;R) ⊗Hq+1(X;R) ! Hp+q+1(X;R) was dened in [Ar1]. If we set Ap(X;R) = Hp+1(X;R) for p> 0 and A0(X;R) = R, then A(X;R) is a graded algebra. In [Be] a coalgebra B(X;K) and dual algebra B(X;K) were de ned for X a cogroup-like space and K a eld. Our main result is that A(X;K) and B(X;K) are isomorphic algebras for X of nite type over K. It follows that the conilpotency class of X is bounded below by the length of the longest product in the algebras B(X;K). In 1964 Arkowitz introduced a product of homotopy sets which assigns an el-ement f; g 2 [X;A [ B] to elements 2 [X;A] and 2 [X;B], where X is a 1{connected associative co-H-spac...
The origin and interplay of products and dualities in algebraic (co)homology theories is ascribed to...
The origin and interplay of products and dualities in algebraic (co)homology theories is ascribed to...
AbstractTwo cochain complexes are constructed for an algebra A and a coalgebra C entwined with each ...
AbstractWe investigate module objects in categories of coalgebras, setting up tensor products and in...
have defined a family of homotopy equivalent CW-complexes whose inte-gral cohomology rings are isomo...
have defined a family of homotopy equivalent CW-complexes whose inte-gral cohomology rings are isomo...
The origin and interplay of products and dualities in algebraic (co)homology theories is ascribed to...
The origin and interplay of products and dualities in algebraic (co)homology theories is ascribed t...
In the previous lecture, we outlined some approaches to describing the cohomology of the classifying...
AbstractIn this paper we consider the theory of higher order homotopy coalgebras as a collection of ...
AbstractLet R be a one-relator algebra over a field. We show that R contains two images of a commuta...
This chapter discusses the cohomology of groups. The cohomology of groups is one of the crossroads o...
AbstractThe origin and interplay of products and dualities in algebraic (co)homology theories is asc...
The origin and interplay of products and dualities in algebraic (co)homology theories is ascribed to...
The origin and interplay of products and dualities in algebraic (co)homology theories is ascribed to...
The origin and interplay of products and dualities in algebraic (co)homology theories is ascribed to...
The origin and interplay of products and dualities in algebraic (co)homology theories is ascribed to...
AbstractTwo cochain complexes are constructed for an algebra A and a coalgebra C entwined with each ...
AbstractWe investigate module objects in categories of coalgebras, setting up tensor products and in...
have defined a family of homotopy equivalent CW-complexes whose inte-gral cohomology rings are isomo...
have defined a family of homotopy equivalent CW-complexes whose inte-gral cohomology rings are isomo...
The origin and interplay of products and dualities in algebraic (co)homology theories is ascribed to...
The origin and interplay of products and dualities in algebraic (co)homology theories is ascribed t...
In the previous lecture, we outlined some approaches to describing the cohomology of the classifying...
AbstractIn this paper we consider the theory of higher order homotopy coalgebras as a collection of ...
AbstractLet R be a one-relator algebra over a field. We show that R contains two images of a commuta...
This chapter discusses the cohomology of groups. The cohomology of groups is one of the crossroads o...
AbstractThe origin and interplay of products and dualities in algebraic (co)homology theories is asc...
The origin and interplay of products and dualities in algebraic (co)homology theories is ascribed to...
The origin and interplay of products and dualities in algebraic (co)homology theories is ascribed to...
The origin and interplay of products and dualities in algebraic (co)homology theories is ascribed to...
The origin and interplay of products and dualities in algebraic (co)homology theories is ascribed to...
AbstractTwo cochain complexes are constructed for an algebra A and a coalgebra C entwined with each ...