The available data, mainly topography, geoid, and heat flow, describing hotspots worldwide are examined to constrain the mechanisms for swell uplift and to obtain fluxes and excess temperatures of mantle plumes. Swell uplift is caused mainly by excess temperatures that move with the lithosphere plate and to a lesser extent hot asthenosphere near the hotspot. The volume, heat, and buoyancy fluxes of hotspots are computed from the cross-sectional areas of swells, the shapes of noses of swells, and, for on ridge hotspots, the amount of ascending material needed to supply the length of ridge axis which has abnormally high elevation and thick crust. The buoyancy fluxes range over a factor of 20 with Hawaii, 8.7 Mg s-1, the largest. The buoy-ancy...