Day [75] showed that the category of continuous lattices and maps which preserve directed joins and arbitrary meets is the category of algebras for a monad over Set, Sp or Pos, the free functor being the set of filters of open sets. Separately, Berry [78] constructed a cartesian closed category whose morphisms preserve directed joins and connected meets, whilst Diers [79] considered similar functors independently in a study of categories of models of disjunctive theories. Girard [85] built on Berry’s work to build a new and very lean model of polymorphism. In this paper we bring these strands together, defining a monad based on filters of con-nected open sets and showing that its category of algebras has Berry’s (stable) morphisms and is ca...