We present an approach for determining the linear stability of steady-states of PDEs on massively parallel computers. Linearizing the transient behavior around a steady-state solution leads to an eigen-value problem. The eigenvalues with largest real part are calculated using Arnoldi's iteration driven by a novel implementation of the Cay-ley transformation. The Cayley transformation requires the solution of a linear system at each Arnoldi iteration. This is done iteratively so that the algorithm scales with problem size. A representative model problem of 3D incompressible ow and heat transfer in a rotating disk reactor is used to analyze the eect of algorithmic parameters on the performance of the eigenvalue algorithm. Successful cal...
We review methods for computing the eigenvalues of a matrix pair near the imaginary axis. An applica...
International audienceFor constructing reduced-order models of large-scale fluid-structure systems, ...
Abstract. This paper describes a parallel implementation of the Jacobi-Davidson method to compute ei...
We present an approach for determining the linear stability of steady states of PDEs on massively pa...
We present results for large scale linear stability analysis of buoyancy driven fluid flows using a ...
We are interested in the stability of three-dimensional fluid flows to small dkturbances. One comput...
We are interested in the stability of three-dimensional fluid flows to small disturbances. One compu...
Abstract. We are interested in the stability of three-dimensional uid ows to small disturbances. On...
A high-order computational tool based on spectral and spectral/hp elements (J. Fluid. Mech. 2009; to...
A parallel homotopy algorithm is presented for finding a few selected eigenvalues (for example those...
A simple, fast and efficient algorithm to compute steady non-parallel flows and their linear stabili...
International audienceThis article proposes a method for solving generalized eigenvalue problems on ...
Computing some eigenpairs of a Finite Element (FE) flow model is an important task. Parallel computa...
summary:This paper is concerned with the problem of computing a small number of eigenvalues of large...
International audienceA parallel homotopy algorithm is presented for finding a few selected eigenval...
We review methods for computing the eigenvalues of a matrix pair near the imaginary axis. An applica...
International audienceFor constructing reduced-order models of large-scale fluid-structure systems, ...
Abstract. This paper describes a parallel implementation of the Jacobi-Davidson method to compute ei...
We present an approach for determining the linear stability of steady states of PDEs on massively pa...
We present results for large scale linear stability analysis of buoyancy driven fluid flows using a ...
We are interested in the stability of three-dimensional fluid flows to small dkturbances. One comput...
We are interested in the stability of three-dimensional fluid flows to small disturbances. One compu...
Abstract. We are interested in the stability of three-dimensional uid ows to small disturbances. On...
A high-order computational tool based on spectral and spectral/hp elements (J. Fluid. Mech. 2009; to...
A parallel homotopy algorithm is presented for finding a few selected eigenvalues (for example those...
A simple, fast and efficient algorithm to compute steady non-parallel flows and their linear stabili...
International audienceThis article proposes a method for solving generalized eigenvalue problems on ...
Computing some eigenpairs of a Finite Element (FE) flow model is an important task. Parallel computa...
summary:This paper is concerned with the problem of computing a small number of eigenvalues of large...
International audienceA parallel homotopy algorithm is presented for finding a few selected eigenval...
We review methods for computing the eigenvalues of a matrix pair near the imaginary axis. An applica...
International audienceFor constructing reduced-order models of large-scale fluid-structure systems, ...
Abstract. This paper describes a parallel implementation of the Jacobi-Davidson method to compute ei...