A generic de.nition of fuzzy morphism between graphs (GFM) is introduced that includes classical graph related problem de.nitions as sub-cases (such as graph and subgraph isomorphism). The GFM uses a pair of fuzzy relations, one on the vertices and one on the edges. Each relation is a mapping between the elements of two graphs. These two fuzzy relations are linked with constraints derived from the graph structure and the notion of association graph. The theory extends the properties of fuzzy relation to the problem of generic graph correspondence. We introduce two complementary interpretations of GFM from which we derive several interesting properties. The.rst interpretation is the generalization of the notion of association compatibility. ...