1. There has recently been much interest, if not a tremendous amount of progress, in the arithmetic theory of automorphic forms. In this lecture I would like to present the views not of a number theorist but of a student of group representations on those of its problems that he finds most fascinating. To be more precise, I want to formulate a series of questions which the reader may, if he likes, take as conjectures. I prefer to regard them as working hypotheses. They have already led to some interesting facts. Although they have stood up for a fair length of time to the most careful scrutiny I could give, I am still not entirely easy about them. Indeed even at the beginning in the course of the definitions, which I want to make in complete...
Abstract. We state conjectures on the relationships between automorphic representations and Galois r...
This essay will exhibit the realization of discrete series representations of SL2(R) on spaces of ho...
[eng] The Langlands program is a vast and unifying network of conjectures that connect the world of ...
1. There has recently been much interest, if not a tremendous amount of progress, in the arithmetic ...
International audienceThe present volume is the first in a projected series of three orfour collecti...
International audienceThe present volume is the first in a projected series of three orfour collecti...
International audienceThe present volume is the first in a projected series of three orfour collecti...
The second of three volumes devoted to the study of the trace formula, these proceedings focus on au...
0. Let G be a reductive group over Z. For any field F we can consider the group Gp of F-points on G....
In this paper we investigate arithmetic properties of automorphic forms on the group G' = GL<sub>m</...
I will present new results about the representation theory of $p$-adic groups and demonstrate how th...
The modern theory of automorphic forms is a response to many different impulses and influences, abov...
I present a general theory of overconvergent p-adic automorphic forms for reductive algebraic groups...
This book contains selected papers based on talks given at the "Representation Theory, Number Theory...
Algebraic structures and fields of definition I have written this essay in order to summarize in one...
Abstract. We state conjectures on the relationships between automorphic representations and Galois r...
This essay will exhibit the realization of discrete series representations of SL2(R) on spaces of ho...
[eng] The Langlands program is a vast and unifying network of conjectures that connect the world of ...
1. There has recently been much interest, if not a tremendous amount of progress, in the arithmetic ...
International audienceThe present volume is the first in a projected series of three orfour collecti...
International audienceThe present volume is the first in a projected series of three orfour collecti...
International audienceThe present volume is the first in a projected series of three orfour collecti...
The second of three volumes devoted to the study of the trace formula, these proceedings focus on au...
0. Let G be a reductive group over Z. For any field F we can consider the group Gp of F-points on G....
In this paper we investigate arithmetic properties of automorphic forms on the group G' = GL<sub>m</...
I will present new results about the representation theory of $p$-adic groups and demonstrate how th...
The modern theory of automorphic forms is a response to many different impulses and influences, abov...
I present a general theory of overconvergent p-adic automorphic forms for reductive algebraic groups...
This book contains selected papers based on talks given at the "Representation Theory, Number Theory...
Algebraic structures and fields of definition I have written this essay in order to summarize in one...
Abstract. We state conjectures on the relationships between automorphic representations and Galois r...
This essay will exhibit the realization of discrete series representations of SL2(R) on spaces of ho...
[eng] The Langlands program is a vast and unifying network of conjectures that connect the world of ...